
Storm 3 

Basic Programming manual
V1.0

D28 0214



Introduction to Basic Programming.....................................2
3
4
4
4
4
5
5
5
6
6
6
6
7
7
7

Commands and Functions....................................................8
..9
.9
.9
.9

.10
..10
..10
..11

....11
.11
.11
.11

..12

..12
.12

....12
...13
..13

...13
14
14
14
15
15
15
16

ABS (number)....................................................................
ACOS (number).................................................................
AND.....................................................................................
ARRAY.................................................................................
ARRAYDIM (array)..............................................................
ARRAYSIZE (array, number)..............................................
ASC (string).......................................................................
ASIN (number)..................................................................
ATAN (number).................................................................
BREAK..............................................................................
CASE...................................................................................
CEIL (number)..................................................................
CHR$ (number)................................................................
CLEARSDI ( )....................................................................
CLOSE...............................................................................
CONTINUE....................................................................
COS (number)..................................................................
DATETIME.......................................................................
DEFAULT...........................................................................
DELAY..............................................................................
DO.....................................................................................
ELSE...................................................................................
ELSEIF................................................................................
END....................................................................................
ENDIF..................................................................................
END SUB............................................................................

12VSWD......................................................................
5VREF.........................................................................
ANALOGX.................................................................
COUNTERX...............................................................
DIGITALX....................................................................
SDIXN or SDIXNN.....................................................
SENSOR.....................................................................
SENSORRAW............................................................
SENSORFUNCTION..................................................
SYSBATT.....................................................................
SYSTEMP....................................................................

16
16
16
17
17
17
17
17
18
18
18
18
18
18
19
19
19
19
20
20
20
20
21
21
22
22
22
22
23
23
23
24
24
24
24
25
25
25
25
25
26
26
26

GOSUB.............................................................................
GOTO...............................................................................
H377C (number).............................................................
H377F (number))............................................................
HEX$(number)................................................................
IF.......................................................................................
INPUT...............................................................................
INSTR (string, string, number).......................................
INT (number)...................................................................
LABEL..............................................................................
LEFT$ (string, number)..................................................
LEN (string).....................................................................
LINE INPUT.....................................................................
LN (number)....................................................................
LOCAL.............................................................................
LOG (number)................................................................
LOOP...............................................................................
LOWER$ (string)............................................................
LTRIM$ (string)...............................................................
MAX (number, number)................................................
MID$ (string, number, number)....................................

END WHILE.......................................................................
EOF (filenumber).............................................................
ERROR...............................................................................
EULER...............................................................................
EXP (number)...................................................................
FALSE................................................................................
FLOOR ( )...........................................................................
FLUSH................................................................................
FOR.....................................................................................
FRAC (number)................................................................
GETVALUE.........................................................................

CONTENTS

Basic Features.....................................................................
Basic Fundamentals............................................................
Scheduling a Program.......................................................
Listening Programs............................................................
Error Handling...................................................................
Grammar and Examples...................................................
Comments...........................................................................
Variables, Strings and Arrays............................................
Control Statements and Loops........................................ 
Arithmetic, Comparison and Logical Operators...........
Math Functions...................................................................
Subroutines........................................................................
File and Serial I/O...............................................................
Escape Sequences and Hex Values.................................
String Processing...............................................................



1

GOSUB.............................................................................
GOTO...............................................................................
H377C (number).............................................................
H377F (number))............................................................
HEX$(number)................................................................
IF.......................................................................................
INPUT...............................................................................
INSTR (string, string, number).......................................
INT (number)...................................................................
LABEL..............................................................................
LEFT$ (string, number)..................................................
LEN (string).....................................................................
LINE INPUT.....................................................................
LN (number)....................................................................
LOCAL.............................................................................
LOG (number)................................................................
LOOP...............................................................................
LOWER$ (string)............................................................
LTRIM$ (string)...............................................................
MAX (number, number)................................................
MID$ (string, number, number)....................................

26
26
26
27
27
27
28
30
30
30
31
31
31
32
32
32
32
32
33
33
33
33
33
33
34
34
34
34
34
35
35
35
35
36
36
37
37
37
37
38
38
38
38

MIN (number, number).................................................
MOD (number, number)...............................................
NEXT................................................................................
NOT.................................................................................
ON number GOSUB labels..........................................
ON number GOTO.......................................................
OPEN..............................................................................
OR...................................................................................
PI.....................................................................................
PRINT...............................................................................
REM.................................................................................
REPEAT..............................................................................
RETURN.............................................................................
RIGHT$ (string, number).................................................
RINSTR (string, string, number)......................................
RND (number)...................................................................
RTRIM$ (string).................................................................
SEEK..................................................................................
SETPORT...........................................................................
SETVALUE.........................................................................

SGN (number)...................................................................
SIN ( )..................................................................................
SLEEP..................................................................................
SPLIT (string, array, string)..............................................
SQR (number)...................................................................
SQRT (number).................................................................
STEP...................................................................................
STR$ (number, string)......................................................
SUB....................................................................................
SWITCH..............................................................................
TAN (number)..................................................................
TELL (filenumber)..............................................................
THEN.................................................................................
TO.......................................................................................
TOKEN (string, array, string)...........................................
TRIM$ (string)....................................................................
TRUE...................................................................................
UNTIL.................................................................................

12VSWD....................................................................
5VREF ........................................................................
COUNTERX...............................................................
DIGITALX...................................................................
SENSORFUNCTION..................................................

Example Programs..............................................................

Contents

END WHILE.......................................................................
EOF (filenumber).............................................................
ERROR...............................................................................
EULER...............................................................................
EXP (number)...................................................................
FALSE................................................................................
FLOOR ( )...........................................................................
FLUSH................................................................................
FOR.....................................................................................
FRAC (number)................................................................
GETVALUE.........................................................................

UPPER$ (string).................................................................
USING...............................................................................
VAL (string).......................................................................
WEND...............................................................................
WHILE...............................................................................
XOR (number, number)..................................................

AutoPrint.bas....................................................................
CompassCorrection.bas................................................
SensorAvg.bas.................................................................
SensorMax.bas................................................................
Listener.bas.......................................................................
VR2C.bas..........................................................................

39
39
39
39
40
40
41
42
43
43
43
44
45



BASIC 
PROGRAMMING01 /

2



Basic Programming

Each Storm data logger contains a built-in BASIC interpreter (as of firmware version 1.4.2) allowing 
for more complex procedures and more specific control over operations performed by the data 
logger.  Many traditional BASIC commands and features have been combined with an added sub-
set of Storm-specific operations to create the Basic programming language available on the Storm.  
Programs can be easily created, edited, and debugged directly on the Storm, enabling quick and 
verified programs to enhance the Storm experience.  This manual will cover all of the major Basic 
commands and provide examples on how they are used.

Basic Features
•  User-defined number and string variables, including single and multi-dimensional 
     arrays support
•  Built-in string and number processing functions (for both received and 
    user-created variables)
•  Easy access to RS-232 COM/RS-485 serial ports using simple PRINT and 
    INPUT commands
•  Easy access to log and data files using simple PRINT and INPUT commands
•  User-created subroutine support
•  Support for traditional BASIC constructs such as goto, gosub, and line numbers
•  Structured programming commands including SWITCH-CASE statements, single and   
    multi-line IF-THEN statements, FOR, WHILE, REPEAT, and DO loops
•  Ability to perform raw measurements of data logger Inputs (e.g. Analog, Digital, 
    SDI-12, etc)
•  Ability to retrieve current and previously measured values of any Sensor
•  Access to system variables such as date and time
•  Ability to perform complex math operations using built in trigonometric and 
    logarithmic functions
•  Ability to use a Basic program’s returned values within Outputs (Log File, GOES, etc)
•  Ability to run a program in response to incoming RS-232 serial communication
•  No limit to the number of variables created or used within a program
•  No file size limit on Basic programs
•  No limit to the number of Basic programs installed and/or used on the system
•  Easy to install on or retrieve programs from the data logger
•  Programs are saved as part of the configuration file
•  Simple program troubleshooting via the User Interface debug option
•  Ability to create and/or edit a Basic program directly on the User Interface
•  Basic programs can be easily run on a scheduled basis or from a digital or serial event

3



Understanding the available functions and commands as well as the overall operations and flow 
of Basic is essential to its use within the Storm.  Primary Basic concepts and examples are provided 
below, followed by a listing of all available commands and functions.  Each command is given a 
description and an example of its use.  Additional examples are included at the end of this manual.

Before a Basic program can be used, it must first be installed on the Storm.  This is done through 
the Sensors > Basic Programming screen.  Basic programs should have a “.bas” extension to 
identify them as Basic programs.  There is no limit to the number of programs that can be installed 
or used on the Storm

Basic Fundamentals

BASIC PROGRAMMING

Basic programs on the Storm can be set up to run on a timed schedule.  A Basic program is set 
up similar to any other sensor through the Sensor > Add New Sensor screen.  Selecting “Basic 
Program” from the available list will create the structure necessary to schedule a Basic program.  
When a program is selected, the program’s internal variables are displayed as selectable items.  
Each variable’s value can be captured and used after a program has run.  These values can be 
used with one or more outputs, such as logging to a file, sending to GOES, or sending to Storm 
Central.  Basic programs are evaluated according to their ordering within the sensor list, set by 
each sensor’s Scan Order.  Basic programs should be placed last in the Scan Order if the programs 
use values from other sensors measuring at the same scan time, in order to retrieve the latest 
measurement values.

Scheduling a Program

Basic programs can also be used to respond to “listen” and respond to communication on the 
RS-232 Com port.  Programs can be used to respond to specific commands, make measurements, 
send data, etc.  Using a listening program, data loggers or other serial devices (e.g. a PC or server) 
can communicate and send data back and forth.  Listening programs are assigned under the 
Outputs > Communication Ports Setup screen in the Storm.  Examples of listening programs can 
be found under the OPEN command.

Listening Programs

4

Basic programs are parsed before execution and validatedthroughout.  If any syntax errors are 
found in the code, the Basic program will abort and the Storm will continue its operations.

To assist with troubleshooting, the Sensors >Basic Programmingscreen contains a Debug section 
that allows line by line execution of an installed Basic program with detailed reporting of variables 
information and other related output.  Any errors that are reported should be resolved before 
implementing the program into the Storm’s schedule.

Error Handling



Basic Programming

5

Basic programming examples provided throughout the manual will follow a specific format.  All 
Basiccommands and functions will be capitalized while all variables and strings may contain both 
uppercase and lowercase lettering.  Though this format is used, the Basicinterpreter is not case-
sensitive with respect to commands and functions.  Variables, however, are case-sensitive.  In 
other words, the following “PRINT”, “Print”, and “print” commands are all interpreted as valid PRINT 
commands, whereas variables “var” and “Var” are interpreted as two different variables.  Code 
examples given in the manual will appear similar to the following:
 
            PRINT “Hello World”
 var =12345.67

Grammar and Examples

The REM statement (meaning remark) or single quote (‘) can be used to introduce a comment 
that extends to the end of the line.  Comments can exist anywhere and span a single line.  Once 
a comment has been started, the remainder of the line will also be considered a comment.  
Comments are not necessary in a program (they are ignored by the interpreter), though can 
provide helpful clarification when trying to understand.  The following examples all represent valid 
uses of comments:
 
            REM This is a comment
 ‘ This is also a comment
 PRINT “Hello World”REM This is a valid comment after a command
 PRINT “Hello World” ‘ This is also a valid comment after a command

Comments

Unlike the case-insensitive nature of Basic statements, variables and strings are uniquely identified 
by their names.  Thus a variable named “var” is understood to be different than a similarly named 
variable “Var”.  Standard variables represent a number.
 
 var = 15.2 REM sets var to 15.2
 Var = 0 REM sets Var 0
 String variables are also available and require a trailing “$”.
 var$ = “Hello World”  REM sets var$ to “Hello World”
 
Traditional variables do not need to be declared before their first use.  Number variables are 
initialized to zero (“0”) while string variables are initialized to an empty string (“”).  Arrays, on the 
other hand, need to be created first using the ARRAY command, prior to being used.  Arrays 
contain multiple number or string variables.  Array contents are initialized to zeros or empty strings 
depending on their declaration type.
 
 REM create a single-dimension, two element number array
 ARRAY myArray(2)
 var$ = myArray(1), “ “, myArray(2)  REM sets var to “0 0”

Variables, Strings and Arrays



BASIC PROGRAMMING

Basic supports traditional control statements such as GOTO and GOSUB as well as single and 
multi-line IF-THEN statements and SWITCH-CASE statements.  GOTO and GOSUB can jump to 
labels or line numbers within the code.  Line numbers may be used in the Basic program, but they 
are not required.

Loops are also allowed using FOR, WHILE, REPEAT, and DO statements.  BREAK statements may be 
used to leave any of the previously mentioned loops while the CONTINUE command can be used 
to begin the next iteration of a loop

Control Statements and Loops

6

In order to ease the structure and flow of a Basic program, subroutines may be declared and used 
to perform various operations.  The separation of these subroutines allows a more procedural 
approach to be taken within the code as well as simplify the reuse of segments of code in later 
programs.  These subroutines can accept multiple parameters, numbers or strings, and can 
likewise return a number or a string, if desired.  Subroutines are declared with the SUB command, 
ended with the END SUB command, and return values using the RETURN command.
 
 REM Calculate the Volume of a Rectangle
 height = 3
 width = 4
 depth = 5
 
 volume = calc_volume(height, width, depth)  REM sets volume to 60
 
 SUB calc_volume(h, w, d)
   vol = h * w * d
   RETURN vol
 END SUB

Subroutines

Basic provides a comprehensive list of math functions including logarithmic and trigonometric 
functions.  All trigonometric functions use radians.  The following functions are available: ABS, 
ACOS, ASIN, ATAN, CEIL, COS, EXP, FLOOR, FRAC, H377C, H377F, INT, LN, LOG, MAX, MIN, MOD, 
RND, SGN, SIN, SQR, SQRT, TAN, XOR.  Constants EULERand PI are also available for use within 
Basic programs.

Math Functions

Traditional arithmetic, comparison, and logical operators are available for use within Basic and are 
noted below (ordered by precedence):

Arithmetic, Comparison and Logical Operators

Arithmetic:
 ^ (power)
 - (unary minus)
 * / % (integer modulus)
 + -

Comparison:
 = ==
 <><= >=
 <> !=

Logical:
 NOT
 AND
 OR



Basic Programming

7

Files stored on the Storm’s local file system can be accessed for reading, writing, and appending of 
data.  The OPEN command allows files to be opened and assigned a number for use throughout 
the program.  Using the INPUT and PRINT commands with the file’s assigned number allows Basic 
to read and write to the opened file.  Other commands such as EOF, LINE INPUT, SEEK, and TELL 
allow for further traversal and manipulation of data files.

The Storm’s RS-232 Comand RS-485 ports can be opened, closed, read from, and written to with 
OPEN, CLOSE, INPUT, and PRINT commands as well.

More information and examples relating to both file and serial I/O can be found under each of the 
respective commands.

File and Serial I/O

Special escape sequences are available for use within Basic.  Non-printable characters such as a 
tab or newline can be created by a using a backslash (“\”) followed by a single letter or hex value 
sequence as detailed below.

Escape Sequences and Hex Values

Additional printable and non-
printable characters from the 
ASCII chart can be accessed 
by specifying a hexadecimal 
value, using the escape 
sequence \xXX, where XX is 
the hexadecimal value for 
the desired symbol in the 
ASCII chart.  For example, 
from the table above, the 
carriage return character (\r) 
would be represented by the 
hexadecimal escape sequence 
\x0D.

Basic provides a number of commands that allow for string manipulation and processing.  
Functions that return string variables contain a trailing “$” whereas functions returning number 
variables do not have a “$”.  Functions such as LEFT$, MID$, and RIGHT$ can be used for extracting 
parts of a string.  Separating a string into usable sections can be done with TOKEN and SPLIT.  
Converting strings to numbers and numbers to strings can be quickly accomplished with the STR$ 
and VAL functions.  The “+” operator may also be used to concatenate strings.  There are many 
other string functions available including ASC, CHR$, HEX$, INSTR, LEN, LOWER$, MID$, UPPER$ 
that may be used to manipulate strings and their contents.

String Processing

Escape 
Sequences

ASCII Value Hex Value Description

\b 8 08 backspace
\t 9 09 horizontal tab
\n 10 0A newline
\v 11 0B vertical tab
\f 12 0C form feed
\r 13 0D carriage return
\” 34 22 double quote
\’ 39 27 single quote
\\ 92 5C backslash

\xXX N/A N/A hex value



8

COMMANDS 
AND FUNCTIONS02 /



9

Commands and Functions

The Storm’s implementation of Basic uses both commands and functions to perform actions and 
return values, though each is syntactically different.  Commands such as INPUT and GETVALUE 
return values to the variable specified at the end of line (following a comma):
 
 REM the following command stores the value of Analog 1 in variable a1
 GETVALUEANALOG1, a1

Functions, on the other hand, specify the variable first, followed by the equal operator (“=”) to 
assign the calculated value:

 REM the following function stores the result in variable dt
 dt = DATETIME(TIME)

Commands and Functions available to the Basic language are listed alphabetically below.

Returns the absolute value of the given number.
 
 var = ABS(-2.5)  REM sets var to 2.5
 var = ABS(100)  REM sets var to 100

ABS (number)

Returns the arc-cosine value of the given number.
 
 var = ACOS(0)  REM sets var to 1.5708 (PI/2)
 var = ACOS(0.5)  REM sets var to 1.0472 (PI/3)

ACOS (number)

A logical operator used between two expressions in a conditional statement (e.g. IF, WHILE, etc.).  
Returns TRUE if the left and right expressions are TRUE, otherwise FALSE is returned.
 
 var = 75
 IF (var > 0 AND var < 50) var = 0REM does not set var (FALSE)
 IF (var >50 AND var < 150) var = 100  REMsets var to 100 (TRUE)

AND

Declares and creates an array.  Arrays may be single or multi-dimensional and filled with numbers 
or strings.  Number arrays, when created, are filled with zeros, while string arrays are filled with 
empty strings (“”).  To enlarge an array’s size (not its dimension), re-declare the array with a larger 
size.  Existing data will be preserved.  Re-declaring an array with a smaller size does nothing.  
ARRAYDIM and ARRAYSIZE can be used to determine the number of dimensions of an array as well 
as the sizes of those respective dimensions.
 
 

ARRAY



COMMANDS AND FUNCTIONS

10

Single-dimensional array:

 ARRAY myArray(5)
 FOR i = 1 TO 5
   myArray(i) = i * 2  REM Duplicate the number’s value inside the array
 NEXT i
 REM myArray(i) now contains values 2 4 6 8 10

Multi-dimensional array:
 
 ARRAY myArray$(3,7)  REM 2-dimensional string array (3 rows, 7 columns)
 FOR i = 1 TO 3
   FOR j = 1 TO 7
     myArray$(i,j) = str$(i * j)  REM str$ converts a number to a string
   NEXT j
 NEXT i
 REM myArray$(i,j) now contains values 1 2 3 4  5  6  7
         2 4 6 8  10 12 14
         3 6 9 12 15 18 21

Returns the given array’s number of dimensions.
 
 ARRAY arr(10)
 var = ARRAYDIM(arr()) REM sets var to 1 as arr is one-dimensional
 ARRAY myArr(2,4,4)
 var = ARRAYDIM(myArr()) REM sets var to 3 as myArr is three-dimensional

ARRAYDIM (array)

Returns the given array’s dimension’s size, where array specifies the array and number specifies the 
dimension.  The last parameter is optional and defaults to the first dimension if not specified.
 
 ARRAY myArray(10)
 var = ARRAYSIZE(myArray()) REM sets var to10
 ARRAY myArr$(2,4)
 var = ARRAYSIZE(myArr$(), 2) REM sets var to4

ARRAYSIZE (array, number)

Returns the first character’s ASCII numerical representation.  CHR$( ), converting a numerical value 
to the ASCII character, is the opposite function of ASC( ).
 
 var = ASC(“A”)  REM sets var to 65
 var$ = CHR$(65)  REM sets var$ toA

ASC (string)



11

Used with the SWITCH statement to list potential routes.
 
 a$ = “Hi”
 SWITCH a$
   CASE “Hello”:
            response$ = “And Hello to you”
        BREAK
   CASE “Hi”:
            response$ = “Hi!”  REM this case matches and is used
                   BREAK
 END SWITCH
 REM response$ is now “Hi!”

Returns the arc-sine value of the given number.
 
 var = ASIN(0)  REM sets var to0
 var = ASIN(1)  REM sets var to 1.5708 (PI/2)

ASIN (number)

Returns the arc-tangent value of the given number.
 
 var = ATAN(0)  REM sets var to 0
 var = ATAN(1)  REM sets var to 0.785398 (PI/4)

ATAN (number)

Causes an immediate exit from a loop or SWITCH statement.
 
 a = 0
 WHILE (a < 10)
   a = a + 1
   IF (a > 5) BREAK  REM the while loop exits once a > 5
 WEND
 REM variable a is now 6

BREAK

CASE

Returns the ceiling or smallest integer not less than the given number.
 
 var = CEIL(1.2)  REM sets var to 2
 var = CEIL(4.7)  REM sets var to5

CEIL (number)



12

COMMANDS AND FUNCTIONS

Returns the number’s ASCII character representation. ASC( ), converting a character to its ASCII 
numerical value, is the opposite function of CHR$( ).

 var$ = CHR$(65)  REM sets var to A
 var = ASC(“A”)  REM sets var to 65

CHR$ (number)

Clears the SDI-12 cache.  Prior to a Basic program running, the SDI-12 cache is empty.  All Basic 
programs share the same SDI-12 cache.  When an SDI-12 value is retrieved, a cache of the query 
and response is recorded.  When a subsequent request is made, if the cache has the information 
available, the stored data is returned.  To retrieve new measurements each scan, the cache should 
be cleared prior to retrieving fresh SDI-12 readings.

 CLEARSDI()  REM Clear any cached SDI values
 GETVALUE SDI01, a1$  REM request a new measurement (address 0, param 1)
 GETVALUE SDI02, a2$  REM retrieve the second parameter (from the cache)
 CLEARSDI()  REM Force our next request to be a new measurement
 GETVALUE SDI01, b1$  REM request a new measurement (address 0, param 1)

CLEARSDI ( )

Closes a file or serial port that has been previously opened with the OPEN command.
 
 OPEN “RS-232 COM” AS #9
 CLOSE #9
 
 OPEN “RS-485” AS #6
 CLOSE #6

CLOSE

Used to begin the next iteration of a FOR, WHILE, REPEAT, or DO loop, skipping over the 
remainder of the loop.
 
 sum = 0
 FOR var = 1 TO 5
   IF (var = 3) CONTINUE  REM when var = 3, skip the next statement
 sum = sum + var  REM sets sum to 12 (1 + 2 + 4 + 5)
 NEXT var

CONTINUE



13

Commands and Functions

Returns the cosine value of the given number.
 
 var = COS(0)  REM sets var to 1
 var = COS(PI)  REM sets var to -1

COS (number)

Used to retrieve parts of the current date and time.  Available arguments are DATE, DATE$, TIME, 
TIME$, DAY, JDAY, MONTH, YEAR, SECONDS, MINUTES, HOURS, EPOCH, EPOCHDAY.  DATE 
and TIME return integer values of the current date and time formatted as YYMMDD and HHMMSS 
respectively.  The DATE$ and TIME$ arguments return a similar format as string values, specifically 
“MM/DD/YYYY” according to the Storm’s Date Format setting and “HH:MM:SS” respectively.

SECONDS, MINUTES, HOURS, DAY, MONTH, and YEAR each return a two-digit integer value of the 
specified current date or time subsection.  JDAY returns a three-digit integer value of the Julian 
Day.  EPOCH returns an integer value of the number of seconds since 00:00:00 Jan 1, 1970 while 
EPOCHDAY returns the number of seconds from 00:00:00 Jan 1, 1970 until the start of today’s date 
at 00:00:00.

DATETIME

var = DATETIME(DATE)
var$ = DATETIME(TIME$)
var = DATETIME(TIME)
var$ = DATETIME(TIME$) 
var = DATETIME(DAY) 
var = DATETIME(JDAY)
var = DATETIME(MONTH)
var = DATETIME(YEAR)
var = DATETIME(SECONDS) 
var = DATETIME(MINUTES)
var = DATETIME(HOURS)
var = DATETIME(EPOCH)
var = DATETIME(EPOCHDAY) 

REM sets var to 130903
REM sets var$ to 09/03/2013
REM sets var to 83058
REM sets var$ to 08:30:58
REM sets var to 3
REM sets var to 246
REM sets var to 9
REM sets var to 13
REM sets var to 58
REM sets var to 30
REM sets var to 8
REM sets var to 1378197058
REM sets var to 1378166400

REM Presuming today’s date and time are Sept 3, 2013 at 08:30:58

Used within a SWITCH-CASE statement to mark the default route if no other CASE statements 
are matched.
 
 var = DATETIME(MINUTES)
 path = 0
 SWITCH var
   CASE 0:
     path = 1
 BREAK
  

DEFAULT



14

COMMANDS AND FUNCTIONS

   CASE 15:
     path = 2
 BREAK
   CASE 30:
         path = 3
 BREAK
   CASE 45:
     path = 4
 BREAK
   DEFAULT:
         path = -1
 BREAK
 END SWITCH

Causes the program to pause execution for the specified number of seconds.  A decimal number 
may be used to specify more specific and smaller time increments (e.g. milliseconds).  SLEEP and 
DELAY are identical commands.

 SLEEP 2.5 REM pauses the program for 2.5 seconds
 DELAY 0.25 REM pauses the program for 0.25 seconds

DELAY

Begins an infinite loop encompassed by DO and LOOP.  A BREAK or GOTO statement should be 
used to leave the loop.

 DO
     REM Break out of the loop when our seconds are greater than 30
        x = DATETIME(SECONDS)
        IF (x > 30) BREAK
 LOOP

DO

Optionally used as part of an IF statement to indicate a default branch if no other conditions are 
evaluated as TRUE.

 var = DATETIME(MINUTES)
 sync = 0
 IF (var == 0) THEN
 sync = 1
 ELSE
 sync = -1
 ENDIF

ELSE



15

Commands and Functions

Optionally used as part of an IF statement to indicate another condition to evaluate.  The option is 
evaluated if all previous options have resulted in FALSE. Multiple ELSEIF conditions may be tested 
If the condition evaluates to TRUE,  all following conditions will not be tested.
 
 var = DATETIME(MINUTES)
 sync = 0
 IF (var == 0) THEN
 sync = 1
 ELSEIF (var == 15) THEN
 sync = 2
 ELSEIF (var == 30) THEN
 sync = 3
 ELSEIF (var == 45) THEN
 sync = 4
 ELSE
 sync = -1
 ENDIF

ELSEIF

Immediately ends the Basic program.  Optional if used as the last statement.
 
 var = DATETIME(MINUTES)
 IF (var == 0) THEN
 REM if top of the hour, end the program

END

Declares the end of a multi-line IF-THEN statement.  Not required on single-line if statements.
 
 var = DATETIME(MINUTES)
 sync = 0
 IF (var == 0) THEN
 sync = 1
 ELSEIF (var == 30) THEN
 sync = 2
 ELSE
 sync = -1
 ENDIF

ENDIF



Returns TRUE if the given filenumber has reached the end of the file, FALSE if there is still data 
available to be read from the current position.

 OPEN “SiteID.csv” FOR READING AS #1
 WHILE (NOT EOF(#1))
   LINE INPUT #1, var$ REM reads each line of the log file
 WEND
 CLOSE #1

16

COMMANDS AND FUNCTIONS

Declares the end of a subroutine (begun with the SUB statement).
 
 volume = calc_volume(3, 4, 5)  REM sets volume to 60
 
 SUB calc_volume(h, w, d)
   vol = h * w * d
   RETURN vol
 END SUB

END SUB

Marks the end of a conditional WHILE-WEND loop.  END WHILE may also be used instead 
of WEND.
 
 x = 0
 WHILE (x < 30)
  REM Break out of the loop when our seconds are greater than 30
   x = DATETIME(SECONDS)
 END WHILE

END WHILE

EOF (filenumber)

Ends the Basic program with a custom error message.  Primarily intended for troubleshooting Basic 
programs.

 var = 12
 IF (var > 10) THEN
   ERROR “Number too large!” REM program ends here
 ENDIF

ERROR



17

Commands and Functions

A read-only constant containing the number 2.7182818284590452. 
 
 var = EULER  REM sets var to the euler constant

EULER

Returnseuler raised to the power of the given number.  Identical to EULER^number.

 var = EXP(0)  REM sets var to 1, equivalent to EULER^0
 var = EXP(1)  REM sets var to 2.71828, equivalent to EULER^1
 var = EULER^2  REM sets var to 7.38906, equivalent to EXP(2)

EXP (number)

For files, writes any remaining unwritten (buffered) data to the specified file.  For serial connections, 
removes any extra data on the given line.  Closing a file or serial connection causes an automatic 
flush to occur.

 OPEN “RS-232 COM” AS #2
 INPUT #2, a$  REM retrieves from RS-232 COM and stores in string a$
 PRINT #2 “a1”
 FLUSH #2
 INPUT #2, b$  REM retrieves from RS-232 COM and stores in string b$
 CLOSE #2

 val1 = 12.5
 val2 = 32.6
 OPEN “SiteID.csv” FOR WRITING AS #1
 PRINT #1, “Appened values: “
 FLUSH #1
 PRINT #1, val1, “,”, val2
 CLOSE #1

FLUSH

A read-only constant containing the number 0. 
 
 var = DATETIME(MINUTES)
 top_of_hour = FALSE
 IF (var ==0) THEN
   top_of_hour = TRUE
 ENDIF

FALSE

Returns the floor or largest integer not greater than the given number.

 var = FLOOR(1.2)  REM sets var to 1
 var = FLOOR(4.7)  REM sets var to 4

FLOOR



18

COMMANDS AND FUNCTIONS

Begins a loop encompassed by FOR and NEXT with an optional STEP command.  The default STEP 
is 1, meaning each iteration of the loop will increase the variable by 1.  Negative STEPs may be 
used to count backwards.

 FOR x = 1 TO 3
   REM retrieve the past 3 values of the Sensor named “Analog”
 GETVALUE SENSOR “Analog” x, var$
 NEXT x
 
 FOR x = 6 TO 1 STEP -2
      REM retrieve every other past value of the Sensor named “Analog”
 GETVALUE SENSOR “Analog” x, var$
 NEXT x

FOR

Returns the fractional portion of the given number.

 var = FRAC(26.245)  REM sets var to 0.245

FRAC (number)

Used in conjunction with an identifier to request a new measurement or stored value on the Storm.  
Available identifiers are listed below.  Astring or number variable must be specified after a comma 
to store the result.  If an error is encountered or a value is not available, the Storm’s Error Value 
(default is -99.99) is returned.

GETVALUE

Returns the voltage reading of the switched +12 volt.See SetValue to turn on or off the 
+12Vswd reference.

 GETVALUE 12VSWD, v12$ REM sets v12$ to the voltage of +12Vswd

12VSWD

Returns the voltage reading of the +5V reference.See SetValue to turn on or off the +5V 
reference.

 GETVALUE 5VREF, v5$ REM sets v5$ to the voltage on +5Vref

5VREF

Returns a new measurement from the specified Analog channel.TheXfollowing the identifier 
specifies which analog channelis measured.

 GETVALUE ANALOG1, a1$ REM sets a1$ to the voltage on Analog channel 1
 GETVALUE ANALOG2, a2$ REM sets a2$ to the voltage on Analog channel 2

ANALOGX



19

Commands and Functions

Returns a specified parameter from a connected SDI-12 sensor.  The X following the 
identifier specifies the SDI-12 sensor’s address.  The N or NN denotes the parameter to 
return.  For example, to request the 3rd parameter from an SDI-12 sensor on address 0, the 
identifier SDI03 would be used.

SDI-12 requests and responses are cached to allow quick retrieval of subsequent parameter 
requests.  To force a new measurement to be made for a sensor, the CLEARSDI( ) function 
should be used to clear the SDI-12 cache.   Prior to making SDI-12 requests in a Basic 
program, the CLEARSDI( ) function should probably be called to force new measurements.

 CLEARSDI()
 GETVALUE SDI01, sdi1$ REM sets sdi1$ to parameter 1 from sensor 0
 GETVALUE SDI312, sdi2$ REM sets sdi12$ to parameter 12 from sensor 3

SDIXN or SDIXNN

Returns a sensor’s most recent processed value.  If an unknown sensor is specified, the Error 
String (default is -99.99) is returned.  Prior processed values can be returned by adding an 
additional numerical parameter.  The number 1 indicates the most recent measurement, 2 
the previous measurement, 3 the value processed three scans prior, etc.  Values from SDI-
12 or Basic programs are retrieved by specifying the name of the sensor followed by the 
parameter’s name surrounded by parentheses.
 
 GETVALUE SENSOR “H-377”, temp$
 GETVALUE SENSOR “H-340SDI(Rainfall)”, stage$
 GETVALUE SENSOR “H-340SDI(Rainfall)” 2, previous_stage$

SENSOR

Returns a new counter measurement from the specified Digital port.TheXfollowing the 
identifier specifies which digital portis measured.See SetValue to change the counter value 
of a specific digital port.

 GETVALUE COUNTER1, c1$ REM sets c1$ to the Digital port’s count
 GETVALUE COUNTER2, c2$ REM sets c1$ to the Digital port’s count

COUNTERX

Returns a new measurement from the specified Digital port.A 1 or 0 will be returned based 
on the port’s level, 1 indicating the port is high (>3.5V), 0 indicating the port is low (<0.08V).  
TheXfollowing the identifier specifies which digital portis measured. See SetValue to change 
the level measurement of a specific digital port.

 GETVALUE DIGITAL1, d1$ REM sets d1$ to 1 or 0, based on port level
 GETVALUE DIGITAL2, d2$ REM sets d2$ to 1 or 0, based on port level

DIGITALX



Returns a sensor’s most recent raw/unprocessed value.  A raw value is the value of a 
measurement prior to slope, offset, function or digits are applied to it.  If an unknown sensor 
is specified, the Error String (default is -99.99) is returned.  Prior raw values can be returned 
by adding an additional numerical parameter.  The number 1 indicates the most recent 
measurement, 2 the previous measurement, 3 the value processed three scans prior, etc.  
Values from SDI-12 or Basic programs are retrieved by specifying the name of the sensor 
followed by the parameter’s name surrounded by parentheses.
 
 GETVALUE SENSORRAW “H-377”, temp$
 GETVALUE SENSORRAW “H-340SDI(Rainfall)”, stage$
 GETVALUE SENSORRAW “H-340SDI(Rainfall)” 2, previous_stage$

20

COMMANDS AND FUNCTIONS

SENSORRAW

Returns a sensor’s function, specified by the Use Function option under the Processing 
section of the Storm’s  Sensor Setup screen.  If an unknown sensor is specified, an N/A is 
returned.  Functions from SDI-12 or Basic programs are retrieved by specifying the name of 
the sensor followed by the parameter’s name surrounded by parentheses.  See SetValue to 
change the function of a sensor.
 
 GETVALUE SENSORFUNCTION “H-377”, temp$
 GETVALUE SENSORFUNCTION “H-340SDI(Rainfall)”, stage$

SENSORFUNCTION

Returns a new voltage measurement of the attached battery.

 GETVALUE SYSBATT, b$ REM sets b$ to the voltage of +12V

SYSBATT

Returns a temperature reading of the internal temperature sensor.  The value is returned in 
degrees Celsius.
 
 GETVALUE SYSTEMP, t$ REM sets t$ to the internal temperature

SYSTEMP



21

Commands and Functions

Jumps to the specified label or line number within the program.  GOTO statements never return 
back to the point origin and thus have no RETURN statement.  Subroutines, defined with the SUB 
command, cannot be exited with the GOTO statement.

 h = 3
 w = 4
 d = 5
 GOTO 100  REM sets volume to 60
 GOSUB ComputeArea  REM is never run as above GOTO jumped below
 END
 
 LABEL ComputeArea
   area = h * w
 RETURN
 
 100
 volume = h * w * d

GOTO

Branches to the specified LABEL or line number within the program.  Once a RETURN statement is 
reached, execution is passed back to the statement immediately following GOSUB.  
 
Subroutines, defined with the SUB command, provide a much more flexible method of executing 
and running portions of code and should be used instead of GOSUB.
 
 h = 3
 w = 4
 d = 5
 GOSUB 100  REM sets volume to 60
 GOSUB ComputeArea  REM sets area to 12
 END
 
 LABEL ComputeArea
   area = h * w
 RETURN
 
 100
   volume = h * w * d
 RETURN

GOSUB



Returns the temperature, in degrees Celsius, of the given number (expecting a 0-5V analog voltage 
reading) based on the math equation for the WaterLog model H-377 temperature probe.
 
 var = H377C(3.25)  REM sets var to 23.1779

22

COMMANDS AND FUNCTIONS

H377C (number)

Returns the temperature, in degrees Fahrenheit, of the given number (expecting a 0-5V analog 
voltage reading) based on the math equation for the WaterLog model H-377 temperature probe.
 
 var = H377F(3.25)  REM sets var to 73.7203

H377F (number)

Returns the hexadecimal string representation of the given number.

 var$ = HEX$(32) REM sets var$ to 20

HEX$ (number)

Used to take actions based on the evaluation of given conditional statements.  True is determined 
as anything non-zero; false is zero.
 
The short form of the IF statement does not include a THEN and must remain on one line.  Multi-
line IF statements contain the THEN keyword as well as ENDIF to mark the ending of the IF 
statement.  IF statements may also contain the keywords ELSEIF to introduce alternative conditional 
statements as well as the ELSE keyword to provide a default path if no other conditions evaluate to 
true.

Single-line IF statement:
 
 var = 250
 IF (var > 200) var = 200  REM sets var to 200
 
Multi-line IF statement:
 
 var = 40
 IF (var >60) THEN
 var = 60
 ELSEIF (var >30) THEN
 var = 30  REM sets var to 30
 ELSE
 var = 0
 ENDIF

IF



23

Commands and Functions

Returns the position, starting at the position given by the third optional parameter (default is 1), of 
the first occurrence of the second given string within the first given string beginning at the left.  If 
the string is not found, zero is returned.  RINSTR may be used to begin searching for a string from 
the right, rather than the left.  Zero is returned if the value is not found.
 
 var = INSTR(“A1,B2,C3,D4”, “B2”)  REM sets var to 4
 var = INSTR(“A1,B2,C3,D4,A1,B2”, “B2”, 5)  REM sets var to 16

INSTR (string, string, number)

Returns the integer portion of the given number.

 var = INT(26.245)  REM sets var to 26

INT (number)

Read from a file or serial port that has been previously opened with the OPEN command.  An 
optional delimiter (stop character) may be specified for retrieving data.  The default delimiter for 
files is a space; the end of transmission EOT (0x04) character is used for serial communication.  
When used with a serial port, an additional variable may be specified to set the timeout, in 
milliseconds, for reading from the port (default is 100ms).  Note that files will not return the stop 
character whereas serial communication returns all characters (including the delimiter).  Entire lines 
of files can be retrieved using the LINE INPUT command.
 
 OPEN “RS-232 COM” AS #3
 INPUT #3 250, a$  REM timeout is set to 250ms
 INPUT #3, b$  REM reads again with default 100ms timeout
 INPUT #3 “,” 250, c$  REM read until a comma or 250ms passes
 CLOSE #3

 OPEN “RS-485” AS #2
 INPUT #2 250, a$  REM timeout is set to 250ms
 INPUT #2, b$  REM reads again with default 100ms timeout
 INPUT #2 “,” 250, c$  REM read until a comma or 250ms passes
 CLOSE #2

 OPEN “SiteID.csv” FOR READING AS #1
 INPUT #1, d$  REM retrieves characters until a space is found
 INPUT #1 “\t”, e$  REM retrieves characters until a tab is found
 INPUT #1 “,”, f$  REM retrieves characters until a comma is found
 

INPUT



24

COMMANDS AND FUNCTIONS

Identifies a specific location by name.  Commands such as GOTO and GOSUB can refer to and 
send execution to named LABELs.  Line numbers are a special case of LABELs and do not require 
the LABEL prefix to be named.

 h = 3
 w = 4
 d = 5
 GOSUB 100  REM sets volume to 60
 GOSUB ComputeArea  REM sets area to 12
 END
 
 LABEL ComputeArea
   area = h * w
 RETURN
 
 100
   volume = h * w * d
 RETURN

LABEL

Returns a string, starting from the left side, containing the given number of characters from the 
given string.

 var$ = “A1,B2,C3,D4”
 ab$ = LEFT$(var$, 5)REM sets ab$ to A1,B2

LEFT$ (string, number)

Returns the length of the given string.

 var = LEN(“A1,B2,C3,D4”)  REM sets var to 11

LEN (string)

Reads an entire line from an open file.

 OPEN “SiteID.csv” FOR READING AS #1
 LINE INPUT #1, b$  REM retrieves the first line and stores it in b$
 CLOSE #1

LINE INPUT



25

Commands and Functions

Returns the common (base-10) logarithm of the given number.  The LN function should be used if a 
natural logarithm is required.

 var = LOG(5)  REM sets var to 0.69897
 var = LOG(10)  REM sets var to1

LOG (number)

Returns the given string as all lowercase.

 var$ = LOWER$(“A1,B2,C3,D4”)  REM sets var$ to a1,b2,c3,d4

LOWER$ (string)

Returns the natural logarithm of the given number.  The LOG function should be used if a common 
(base-10) logarithm is required.

 var = LN(3)  REM sets var to 1.09861

LN (number)

Used within a subroutine, LOCAL marks the given variable as valid only within that subroutine. 
Variables within a subroutine are accessible anywhere within the program otherwise.

 SUB change_var()
   LOCAL var
   var = 100
 END SUB
 var = 10
 change_var()
 REM var is still set to 10

LOCAL 

Declares the end of a DO-LOOP statement.

 DO
  REM Break out of the loop when our seconds are greater than 30
   x = DATETIME(SECONDS)
   IF (x > 30) BREAK
 LOOP

LOOP



Returns the given string with all whitespace removed from only the left side.

 var$ = LTRIM$(“  A1,B2,C3,D4  “)  REM sets var$ to “A1,B2,C3,D4  “

26

COMMANDS AND FUNCTIONS

LTRIM$ (string)

Returns the maximum value of the two given numbers.

 a = RND()   REM generates a random number between 0 and 1
 b = RND()   REM generates a random number between 0 and 1
 c = MAX(a, b)  REM sets c to the largest of the two numbers

MAX (number, number)

Returns a smaller section (substring) of a given string. The first parameter is the given string, the second 
is the starting point from the left side, and the third optional parameter dictates how many characters to 
return.  If the third parameter is omitted, all remaining characters are returned.
 
 var$ = MID$(“A2: 12.5, VB: 12.250”, 11)  REM sets var$ to VB: 12.250
 myStr$ = “A1: 15, A2: 18, D3: 0”
 var$ = MID$(myStr$, 9, 6)  REM sets var$ toA2: 18

MID$ (string, number, number)

Returns the minimum value of the two given numbers.
 
 a = RND()   REM generates a random number between 0 and 1
 b = RND()   REM generates a random number between 0 and 1
 c = MIN(a, b)  REM sets c to the smallest of the two numbers

MIN (number, number)

Returns the remainder of a division between the two given numbers.  MOD performs floating-point 
division and returns the remainder.  For integer-only division, use the % operator.

 a = 102.5
 b = 10
 var = MOD(a, b) REM sets var to 2.5 (the remainder of 102.5/10)
 var = a % b  REM sets var to 2 (the remainder of 102/10)

MOD (number, number)

Declares the end of a FOR loop.

 FOR x = 1 TO 10 STEP 2
   REM retrieve the every other value for the Sensor named “Analog”
 GETVALUE SENSOR “Analog” x, var$
 NEXT x

NEXT



27

Commands and Functions

Negates the expression immediately following.  The ! operator may alternatively be used.

 OPEN “SiteID.csv” FOR READING AS #1
 WHILE (NOT EOF(#1))
   LINE INPUT #1, var$ REM reads each line of the log file
 WEND
 CLOSE #1

NOT 

Branches to one of a list of labels(with an expected RETURN) based on the given number.  For 
example, if the given number is 1, the first GOSUB listed is used, if the number is 2, the second 
GOSUB, etc.

 REM iterate through each label
 height = 3
 width = 4
 depth = 5
 FOR a = 1 TO 3
   ON a GOSUB calc_area,calc_volume,200
 NEXT a
 LABEL calc_area
 area = height * width
 RETURN 
 
 LABEL calc_volume
 volume = area * depth
 RETURN
 
 200
 END

ON number GOSUBlabels

Jumps to one of a list of labels(without an expected RETURN) based on the given number/
argument.  For example, if the given number is 1, the first GOTO listed is used, if the number is 2, 
the second GOTO, etc.  Unlike GOSUB, GOTO statements never return back to the point of the 
GOTO. 

 GETVALUE SYSTEMP, temp
 IF (temp > 40) THEN
    var = 1
 ELSEIF (temp > 30) THEN
   var = 2
 ELSE
   var = 3
 

ON number GOTO



28

COMMANDS AND FUNCTIONS

 ENDIF
 
 ON var GOTO critical,moderate,okay
 
 LABEL critical
 SETVALUE DIGITAL1, 1
 SETVALUE DIGITAL2, 1
 SETVALUE DIGITAL3, 1
 END

 LABEL moderate
 SETVALUE DIGITAL1, 0
 SETVALUE DIGITAL2, 1
 SETVALUE DIGITAL3, 1
 END

 LABEL okay
 SETVALUE DIGITAL1, 0
 SETVALUE DIGITAL2, 0
 SETVALUE DIGITAL3, 1
 END

Opens a file, serial port, or connects to a listening port.All files and non-listening ports will be 
automatically closed when a program ends.

Files may be opened with one of three modes: READING, WRITING, or APPENDING.  A file opened 
with WRITING mode will create a new file if the file doesn’t exist, or erase the contents of an 
existing file.  To prevent overwriting of an existing file, use APPENDING for write operations of an 
existing file.  An alternativeOPEN syntax may be used to determine if a file exists, as shown below 
in the file example.

Serial ports are opened with the following defaults: baud rate = 9600, data bits = 8, parity = 
none, stop bits = 1, flow control = none, transmit char delay = 0, transmit line delay = 0.  If other 
port settings are desired, they must be specified prior to opening the port using the SETPORT 
command, as shown below in the serial port example.

Listening ports are opened with settings specified in the interface under Outputs > Communication 
Ports Setup.  The CLOSE command has no effect on a listening port.  When communication occurs 
on a listening port, the assigned Basic program will be initiated.  To send and receive data across 
the port, use the OPEN command as detailed in the example below.  Subsequent INPUT and PRINT 
commands will read and write to the open port.
 

OPEN



29

Commands and Functions

File:
 
 OPEN “SiteID.csv” FOR APPENDING AS #1
 PRINT #1, “A1,B2,C3,D4”
 CLOSE #1
 
 REM Check if file exists, OPEN #1 FOR READING will fail if it does not
 FileExists = 1
 FileName$ = “LogFile.csv”
 IF (NOT OPEN(#1, FileName$)) THEN
   FileExists = 0
 ELSE
   
   CLOSE #1
     OPEN FileName$ FOR READING AS #1
   LINE INPUT #1, line$
   CLOSE #1
 ENDIF

Serial Ports (RS-232 and RS-485):

 SETPORT 300, 8, none, 1, none, 50, 0  REM port settings
 OPEN “RS-232 COM” AS #5  REM open at 300 baud w/50ms tx char delay
 INPUT #5, var$
 PRINT #5, “0M!”;  REM sends 0M!
 CLOSE #5
 
 SETPORT 115200, 8, none, 1, none, 00, 0  REM port settings
 OPEN “RS-485” AS #4  REM open at 115200 baud w/0ms tx line or char delay
 INPUT #4, var$
 PRINT #5, “0M!”;  REM sends 0M!
 CLOSE #4

Listening Port (RS-232 Com):

 OPEN “LISTENER” AS #1  REM settings specified in Storm interface
 PRINT #1 “Please enter a number: “
 INPUT #1 5000, num$  REM wait for 5 seconds for input
 PRINT #1 “\r\n”
 PRINT #1 “You entered: “, num$, “\r\n”
 CLOSE #1



30

COMMANDS AND FUNCTIONS

A logical operator used between two expressions in conditional statements (e.g. IF, WHILE, etc.).  
Returns TRUE if the left, right, or both expressions are TRUE, FALSE if both are FALSE.

 var = 100
 IF (var > 0 OR var < 50) var = 1 REM sets var to 1
 IF (var > 0 OR var < 150) var = 1 REM sets var to 1

 

OR

A read-only constant containing the number 3.1415926535897932. 

 var = PI  REM sets var to 3.14159

PI

Writes characters to a file or serialport.An automatic carriage return and line feed (\r\n) are added 
to all PRINT statements used with file operations unless the statement is ended with a semicolon (;).  
PRINT statements used with serial operations send only the characters specified with no additional 
characters automatically appended.  The USING statement may also be appended for added 
precision or to set the number of digits to print, specified with hashes “#”.
 
Serial communication (RS-232 and RS-485):

 OPEN “RS-232 COM” AS #4
 REM Wake up the H-3531 sensor by sending a character
 PRINT #4 “W”  REM Wakes up our sensor with a “W”
 INPUT #4 6000, H3531$  REM retrieve our measurements (6 sec timeout)
 CLOSE #4

 OPEN “RS-485” AS #3
 PRINT #3 “0316”  REM Send command to our sensor
 INPUT #31000, var$  REM retrieve our measurements (6 sec timeout)
 CLOSE #3

File communication:

 OPEN “SiteID.csv” FOR WRITING AS #1
 PRINT #1 “Digital2,AC-In”  REM \r\n automatically added
 var = 1
 var2 = 256.25
 var3 = 12.565
 PRINT #1 var, “,”, var2, “,”;  REM saves 1,256.25, \r\n not added
 PRINT #1 var3 USING “##.##”  REM saves12.57 followed by \r\n
 PRINT #1 “Done”  REM \r\n automatically added
 CLOSE #1
 

PRINT



31

Commands and Functions

Begins a conditional loop encompassed by REPEAT and UNTIL.  The condition is given 
after the UNTIL statement and while evaluated as TRUE, will continue to iterate through the 
loop.   Once the UNTIL condition is evaluated as FALSE, the loop exits.

 REPEAT
  REM Break out of the loop when our seconds are greater than 30
   x = DATETIME(SECONDS)
 UNTIL (x > 30)

REPEAT

Returns control back to the calling line of a GOSUB call or a subroutine (SUB) call with an optional 
value.

 REM Calculate the Area of a Rectangle
 height = 3
 width = 4
 
 area = calc_area(height, width)  REM stores 12 in area
 
 SUB calc_area(h, w)
 a = h * w
   RETURN a
 END SUB

RETURN

Begins a comment extending to the end of the line.  An apostrophe (“ ‘ ”) may alternatively be used 
to start a comment.

  REM This is a comment
  ‘ This is also a comment
  var = 1  REM This is a valid comment
  var = 2  ‘ This is also a valid comment

REM

Returns a string, starting from the right side, containing the given number of characters from the 
given string.

 var$ = “A1,B2,C3,D4”
 cd$ = RIGHT$(var$, 5)REM sets cd$ to C3,D4

RIGHT$ (string, number)



Returns the position, starting at 1, of the first occurrence of the second given string within the first 
given string beginning at the right.  If the string is not found, zero is returned.  The third parameter 
is an optional number, defaulting to the last element of the string, indicating the starting position 
for the search.  INSTR may be used to begin searching for a string from the left, rather than the 
right.
 
 var = RINSTR(“A1,B2,C3,D4,A1,B2”, “B2”)  REM sets var to 16
 var = RINSTR(“A1,B2,C3,D4,A1,B2”, “B2”, 5)  REM sets var to 4

32

COMMANDS AND FUNCTIONS

RINSTR (string, string, number)

Returns a random number.  An optional number may be specified for the maximum range (from 
zero to, but not including, the given number).  If no number is given, the default is 1.

 x = RND()  REM sets x to a random number between 0 and 0.99999
 y = RND(5)  REM sets y to a random number between 0 and 4.99999

RND (number)

Returns the given string with all whitespace removed from only the right side.

 var$ = RTRIM$(“  A1,B2,C3,D4  “)  REM sets var$ to “  A1,B2,C3,D4”

RTRIM$ (string)

Sets the position from which the next INPUT statement will read from within an open file.  The first 
parameter is the open file, the second parameter tells where to set the next read position, and the 
third is an optional setting of either “BEGINNING”, “CURRENT”, or “END”.  “BEGINNING” sets the 
count from the beginning of the file (and is the default if not specified), “CURRENT” counts from 
the current read position from within the file, and “END” counts from the end of the file.  The TELL 
command retrieves the current read position of the given file.

 REM Presuming SiteID.csv contains:
 REM Digital1,Analog2,WindSpeed
 REM 56.23,2.25,126.5
 
 OPEN “SiteID.csv” FOR READING AS #1
 SEEK #1, LEN(“Digital1”) + 1  REM sets our position to Analog2
 INPUT #1 “,”, var$  REM sets var$ to Analog2
 SEEK #1, -11, “END”  REM sets our position to the Analog2 measurement
 INPUT #1 “,”, var2$REM sets var2$ to 2.25
 CLOSE #1

SEEK



33

Commands and Functions

Sets the serial port settings for unopened communication ports.  Serial ports are opened with 
the following defaults: baud rate = 9600, data bits = 8, parity = none, stop bits = 1, flow control = 
none, transmit char delay = 0, transmit line delay = 0.  If other port settings are desired, they must 
be specified prior to opening the port.  Parity can be set to None, Even, or Odd.  Flow Control can 
be set to None, Software, Hardware, or Both.  Transmit delays are specified in milliseconds.  Port 
settings only need to be set once and will affect all future port openings.

 SETPORT 300, 8, none, 1, none, 50, 0  REM port settings
 OPEN “COM 1” AS #5  REM open the COM at 300 baud w/50ms tx char delay
 CLOSE #5

 

SETPORT

Sets a digital port high (5V) or low (0V).A 0 set the port low, a value greater than zero will set 
it high.See GetValue to retrieve digital port’s status.

 SETVALUE DIGITAL1, 1 REM sets digital port 1 high
 SETVALUE DIGITAL2, 0 REM sets digital port 2 low

DIGITALX

Used in conjunction with an identifier to change settings on the Storm.  Available identifiers are 
listed below.

 

 

SETVALUE

Turns the +12Vswd referenceon or off.A 0 will turn it off, a value greater than zero will turn it on.  See 
GetValue to retrieve +12Vswd voltage.

 SETVALUE 12VSWD, 1 REM sets v12$ to the voltage of +12Vswd

12VSWD

Turns the +5V referenceon or off. A 0 will turn it off, a value greater than zero will turn it on.  
See GetValue to retrieve +5Vref voltage.

 SETVALUE 5VREF, 1 REM turns on the +5Vref
 SETVALUE 5VREF, 0 REM turns off the +5Vref

5VREF

Sets a digital port counter value.

 SETVALUE COUNTER1, 20 REM sets digital port 1 counter to 20
 SETVALUE COUNTER2, 0 REM sets digital port 2 counter to 0

COUNTERX



Sets a sensor’s function, specified by the Use Function option under the Processing section 
of the Storm’s  Sensor Setup screen.  Setting a sensor’s function will automatically enable 
the function for use as well.  If an unknown sensor is specified, an N/A is returned.  Functions 
from SDI-12 or Basic programs are retrieved by specifying the name of the sensor followed 
by the parameter’s name surrounded by parentheses.

 SETVALUE SENSORFUNCTION “H-377”, “H377C(X)”
 SETVALUE SENSORFUNCTION “H-340SDI(Rainfall)”, “0”

34

COMMANDS AND FUNCTIONS

SENSORFUNCTION

Splits apart a string into an array of strings.  The first parameter provides the string to split apart.  
The second parameter provides the array which the new substrings will fill.  The optional third 
parameter provides the delimiters or characters that determine where to split the primary string.  If 
more than one delimiter is specified, splitting will occur at each character given.  For example, if a 
comma and hyphen are given “,-”, content will be split on any commas or hyphens found as in the 
example below.  If no delimiter is specified, whitespace will be used as the delimiter (e.g. spaces 
and tabs).  The number of strings found is returned.

 

 

Returns -1, 0, or 1 indicating the sign (negative, zero, or positive respectively) of the given number.

 var = SGN(-32.645)  REM sets var to -1
 var = SGN(1023.98)  REM sets var to 1

SGN (number)

Returns the sine value of the given number.

 var = SIN(PI/2) REM sets var to 1
 var = SIN(0) REM sets var to 0

SIN (  )

Causes the program to pause execution for the specified number of seconds.  A decimal number 
may be used to specify more specific and smaller time increments (e.g. milliseconds).  SLEEP and 
DELAY are identical commands.

 SLEEP 2.5 REM pauses the program for 2.5 seconds
 DELAY 0.25 REM pauses the program for 0.25 seconds

SLEEP

SPLIT (string, array, string)



35

Commands and Functions

Returns the string equivalent of the given number.  An optional second parameter string may be 
specified to declare the format to be used.  Formats are specified using the hash character (“#”).  If 
not enough hashes are specified, the format will be returned. See VAL( ) for converting a string to a 
number.

 var$= STR$(18.265)   REM sets var$ to 18.265
 var$ = STR$(18.265, “#.#####”) REM sets var$ to #.#####
 var$ = STR$(18.265, “##.####”) REM sets var$ to18.2650
 var$ = STR$(18.265, “#######”) REM sets var$ to      18

Empty elements in the array are created if two delimiters are next to each other.  The TOKEN 
function, on the other hand, does not add empty elements if two or more delimiters are in 
sequence.

The array will be automatically sized (larger or smaller) based on the number of strings that are 
produced by the split.  The number of strings produced will also be returned by the function.
 
 var$ = “A1,B2,C3,D4,-A1,-B2”
 ARRAY arr$(1)
 array_num = SPLIT(var$, arr$(), “,-”)  REM split on commas, returns 8
 REM array arr$ now contains [A1][B2][C3][D4][][A1][][B2]

 

 

Returns the squared value of the given number.  The caret (“^”) may also be used to raise a number 
to a power, such as 2.

 var = SQR(5) REM sets var to 25
 var = 4^2  REM sets var to 16

SQR (number)

Returns the square root value of the given number.  The caret (“^”) may also be used to raise a 
number to a power, having the same effect by using a fraction such as 1/2.

 var = SQRT(25)  REM stores 5 in the var variable
 var = 16^(1/2)  REM sets var to 4

SQRT (number)

Specifies an optional increment in a FOR loop.  Positive or negative numbers may be used.

 FOR a = 10 TO 1 STEP -2
   var = a  REM sets var to  10 8 6 4 2
 NEXT a

STEP

STR$ (number, string)



36

COMMANDS AND FUNCTIONS

Declares the beginning of a SWITCH-CASE clause. The single variable given after the SWITCH 
keyword specifies the character or characters to match.  Once a CASE match is made, the program 
will continue until a BREAK statement is seen, at which point the program will continue execution at 
the END SWITCH statement.  An optional DEFAULT route is followed if no other CASE statements 
cause a match to occur.

 var = 1
 SWITCH var
   CASE 0:
 response$ = “Too low”
     BREAK
   CASE 1:
   CASE 2:
     response$ = “Low”
 BREAK
   CASE 3:
   CASE 4:
     response$ =”Mid”
 BREAK
   CASE 5:
   CASE 6:
 response$ = “High”
     BREAK
   DEFAULT:
     response$ =”Unknown number”
 END SWITCH

Declares a user-defined subroutine.  Subroutines can specify and accept multiple parameters and 
can return a number or string value using the RETURN statement.  The END SUB statement marks 
the end of a subroutine.  Though not required, it is recommended that any subroutine returning a 
string value should name routine with a trailing dollar-sign (“$”).

 area$ = calc_area$(3, 4)  REM sets area$to 12
 volume = calc_volume(3, 4, 5) REM sets volume to 60
 
 SUB calc_area$(h, w)
   area = h * w
   RETURN STR$(area)
 END SUB

 SUB calc_volume(h, w, d)
   vol = h * w * d
   RETURN vol
 END SUB

SUB

SWITCH



37

Commands and Functions

Used with the IF statement to specify a multi-line IF-THEN clause.

 var = 40
 IF (var >60) THEN
 var = 60
 ELSEIF (var >30) THEN
 var = 30  REM sets var to 30
 ELSE
 var = 0
 ENDIF

Returns the tangent value of the given number.

 var = TAN(PI/4) REM sets var to 1
 var = TAN(0)  REM sets var to 0

TAN (number)

Returns the current read position of the given file number.

 REM Presuming SiteID.csv contains:
 REM Digital1,Analog2,WindSpeed
 REM 56.23,2.25,126.5
 
 OPEN “SiteID.csv”  FOR READING AS #1
 INPUT #1, var$ REM sets var$ to Digital1,Analog2,WindSpeed
 var = TELL(#1)  REM sets var to 27
 SEEK #1, -6, “CURRENT”
 var = TELL(#1)  REM sets var to 21
 INPUT #1, var$ REM sets var$ to Speed
 CLOSE #1

TELL (filenumber)

THEN

Used with the FOR statement to specify the range of the loop.

 FOR x = 1 TO 3
   REM retrieve the past 3 values of the Sensor named “Analog”
 GETVALUE SENSOR “Analog” x, var$
 NEXT x

TO



38

COMMANDS AND FUNCTIONS

Splits apart a string into an array of strings.  The first parameter provides the string to split apart.  
The second parameter provides the array which the new substrings will fill.  The optional third 
parameter provides the delimiters or characters that determine where to split the primary string.  If 
more than one delimiter is specified, splitting will occur at each character given.  For example, if a 
comma and hyphen are given “,-”, content will be split on any commas or hyphens found as in the 
example below.  If no delimiter is specified, whitespace will be used as the delimiter (e.g. spaces 
and tabs).The number of strings found is returned.
 
Empty elements in the array are not created if two delimiters are next to each other.  The SPLIT 
function, on the other hand, does add empty elements if two or more delimiters are in sequence.
 
The array will be automatically sized (larger or smaller) based on the number of strings that are 
produced by the split.  The number of strings produced will also be returned by the function.
 
 var$ = “A1,B2,C3,D4,-A1,-B2”
 ARRAY arr$(1)
 array_num = TOKEN(var$, arr$(), “,-”)  REM split on commas, returns 6
 REM array arr$ now contains [A1][B2][C3][D4][A1][B2]

TOKEN (string, array, string)

Returns the given string with all whitespace removed from both the left and right side.

 var$ = TRIM$(“  A1,B2,C3,D4  “)  REM sets var$ to A1,B2,C3,D4

TRIM$ (string)

A read-only constant containing the number 1. 
 
 var = DATETIME(MINUTES)
 top_of_hour = FALSE
 IF (var ==0) THEN
   top_of_hour = TRUE
 ENDIF

TRUE

Marks the end of a conditional loop encompassed by REPEAT and UNTIL.  The condition is given 
after the UNTIL statement and while evaluated as TRUE, will continue to iterate through the loop.   
Once the UNTIL condition is evaluated as FALSE, the loop exits.
 
 REPEAT
  REM Break out of the loop when our seconds are greater than 30
   x = DATETIME(SECONDS)
 UNTIL (x > 30)

UNTIL



39

Commands and Functions

Marks the end of a conditional WHILE-WEND loop.  END WHILE may also be used instead of 
WEND.

 x = 0
 WHILE (x < 30)
  REM Break out of the loop when our seconds are greater than 30
   x = DATETIME(SECONDS)
 WEND

Returns a number equivalent for the given string. Whitespace is ignored. See STR$( ) for converting 
a number to a string.

 var = VAL(“26.250”) REM sets var to 26.250
 var = VAL(“  22  “) REM sets var to 22

Returns the given string as all uppercase.

 var$ =UPPER$(“a1,b2,c3,d4”)  REM sets var$ to A1,B2,C3,D4

UPPER$ (string)

Used with the PRINT statement to specify the format of the given number.  Format is specified 
using hashes (“#”).  If more hashes are provided than needed, the beginning is space-filledand the 
end zero-padded.  If not enough hashes are given before the decimal, the hash format is returned.

 var = 128.265
 OPEN “SiteID.csv” FOR WRITING AS #2
 PRINT #2, var USING “####.###” REM prints  128.265
 PRINT #2, var USING “###.####” REM prints 128.2650
 PRINT #2, var USING “###.##”  REM prints 128.26
 PRINT #2, var USING “##.##”  REM prints ##.##
 PRINT #2, var USING “###”  REM prints 128
 CLOSE #2

USING

VAL (string)

WEND



40

COMMANDS AND FUNCTIONS

Marks the beginning of a conditional WHILE-WEND loop.  The condition is specified after the WHILE 
keyword.  As long as the condition evaluates to TRUE, the loop will continue to iterate.  Once the condition 
evaluates to FALSE, the loop will exit.

 REM Presuming SiteID.csv contains:
 REM Digital1,Analog2,WindSpeed
 REM 56.23,2.25,126.5
 
 OPEN “SiteID.csv” FOR READING AS #1
 WHILE (!EOF(#1))
   INPUT #1 “,”, var$ REM reads each name and value from the file
 WEND
 CLOSE #1

WHILE 

Returns the bitwise exclusive or (as a number) of the two numeric parameters.

 var = XOR(6, 2) REM sets var to XOR: 4

XOR (number, number)



41

EXAMPLE 
PROGRAMS03 /



42

EXAMPLE PROGRAMS

REM  Prints out the last line of the log file to the RS-232 Com port 
REM  When set up to run with the sensors, prints out their values every scan

LogFile$ = “SiteID.csv”

OPEN LogFile$ FOR READING AS #1
SEEK #1, 0, “END”
fileSize = TELL(#1)
filePosition = TELL(#1)

fileError = 0
foundEnd = 0
IF (filePosition < 150) THEN
 REM The first search should begin at the start
 SEEK #1, 0, “BEGINNING”
ELSE
 REM Note that this is presuming that each log line is less than 150 characters long
 SEEK #1, -150, “END”
END IF

WHILE (foundEnd == 0 and fileError == 0)
 LINE INPUT #1, LastLogLine$
 filePosition = TELL(#1)
 IF (filePosition == fileSize) THEN
  foundEnd = 1
 END IF
WEND
CLOSE #1

SETPORT 9600, 8, none, 1, none, 50, 0
OPEN “RS-232 Com” AS #2
PRINT #2 LastLogLine$, “\r\n”
CLOSE #2

AutoPrint.bas

The following programs are provided for reference when creating and using the Basic interpreter.



43

Example Programs

REM Determines true wind direction as a bouy rotates,
REM  based off recorded compass and wind direction

GETVALUE SENSOR “Compass”, WindDirVal
GETVALUE SENSOR “WD”, CompassVal

TrueWindDirVal = WindDirVal + CompassVal

IF (TrueWindDirVal >= 360) THEN
 TrueWindDirVal = TrueWindDirVal - 360
END IF

CompassCorrection.bas

REM Calculates the running average for a specific sensor

SensorName$ = “SystemTemperature”
Measurements = 4
CombinedValue = 0

FOR n = 1 TO Measurements
 GETVALUE SENSOR SensorName$ n, SensorValue
 CombinedValue = CombinedValue + SensorValue
NEXT n

AverageValue = CombinedValue / Measurements

SensorAvg.bas

REM Finds the maximum measurement of the given sensor’s last n values

SensorName$ = “TempC”
Measurements = 4
MaximumValue = -99999

FOR n = 1 TO Measurements
 GETVALUE SensorName$ n, SensorValue
 IF (SensorValue > MaximumValue) THEN
     MaximumValue = SensorValue
 END IF
NEXT n

SensorMax.bas



REM Respond to simple commands on the RS-232 Com port as a Listener program

OPEN “LISTENER” AS #3
PRINT #3 “Enter Command > “

50
REM Ten seconds of inactivity causes the program to exit
INPUT #3 “\n” 10000, reply$

IF (reply$ == “”) THEN
 END
ELSE
 REM Trim trailing carriage return or line feed
 DO
      last_char$ = RIGHT$(reply$, 1)
           IF (last_char$ == “\n”) OR (last_char$ == “\r”) THEN
     reply$ = LEFT$(reply$, LEN(reply$) - 1)
  ELSE
      BREAK
  END IF
 LOOP
ENDIF

REM remove case sensitivity from command
reply$ = UPPER$(reply$)

SWITCH reply$
 CASE “BATTERY?”:
      GETVALUE SYSBATT, var
      PRINT #3 “Battery = “, var USING “##.#”, “\r\n”
 BREAK

 CASE “LASTSTAGE?”:
      GETVALUE SENSOR “Stage”, var
      PRINT #3 “Stage = “, var, “\r\n”
 BREAK

 CASE “ANALOG1?”:
      GETVALUE ANALOG1, var
      PRINT #3 “Analog 1 = “, var USING “##.###”, “\r\n”
 BREAK

 DEFAULT:
      PRINT #3 “Unknown command \””, reply$,”\” \r\n”
 BREAK
END SWITCH
GOTO 50

Listener.bas

44

EXAMPLE PROGRAMS



45

Example Programs

REM Communicate with and retrieve data from an RS-232 sensor

SerialNum$ = “450065”

SETPORT 9600,8,None,1,None,0,0
OPEN “RS-232 COM” AS #4
PRINT #4 “\r”  REM Wake up sensor
SLEEP 0.100  REM Wait for sensor to fully wake up

REM COMMAND FORMAT: *SSSSSS.P#CC,command\r
REM  SSSSSS = serial number of device (passed in)
REM  P = 0
REM  CC = decimal summation of SSSSSS and P
SerialNumLength = LEN(SerialNum$)
SerialNumSum = 0
SerialNumChar = 1
WHILE (SerialNumLength > 0)
 SerialNumSum = SerialNumSum + VAL(MID$(SerialNum$, SerialNumChar, 1))
 SerialNumChar = SerialNumChar + 1
 SerialNumLength = SerialNumLength - 1
WEND
IF (SerialNumSum < 10) THEN
 SerialNumSum$ = “0” + STR$(SerialNumSum)
ELSE
 SerialNumSum$ = STR$(SerialNumSum)
END IF
PRINT #4 “*”, SerialNum$, “.0#”, SerialNumSum$, “,RTMNOW\r”
INPUT #4 “\r” 5000, ack$  REM retrieve the acknowledgement
INPUT #4 “\r” 5000, status$  REM retrieve the status line
INPUT #4 “>” 20000, reply$
CLOSE #4

REM Remove initial <CR><LF> from reply
NLPosition = INSTR(reply$, “\n”)
IF (NLPosition < 3) THEN
 reply$ = MID$(reply$, NLPosition + 1)
END IF

REM Remove the trailing greater than symbol and <CR><LF> from reply
GTPosition = INSTR(reply$, “>”)
IF (GTPosition > 0) THEN
 reply$ = MID$(reply$, 1, GTPosition - 3)
END IF

IF (LEN(reply$) > 5) THEN
 OPEN “VR2CData.csv” FOR APPENDING AS #3
 PRINT #3, reply$
 CLOSE #3
END IF

VR2C.bas



1) The tissue in plants that brings water upward from the roots;
2) a leading global water technology company.

We’re 12,000 people unified in a common purpose: creating innovative solutions
to meet our world’s water needs. Developing new technologies that will improve
the way water is used, conserved, and re-used in the future is central to our work.
We move, treat, analyze, and return water to the environment, and we help people
use water efficiently, in their homes, buildings, factories and farms. In more than
150 countries, we have strong, long-standing relationships with customers who
know us for our powerful combination of leading product brands and applications
expertise, backed by a legacy of innovation.

For more information on how Xylem can help you, go to www.xyleminc.com

Xylem 

Storm 3 is a trademark of Xylem Inc. or one of its subsidiaries. 
© 2014  Xylem, Inc.    D28   0214

Xylem—WaterLOG
95 W 100 S, Suite 150
Logan, UT 84321
Tel +1.435.753.2212
Fax +1.435.753.7669
www.waterlog.com


