NitraVis 701 IQ TS
NitraVis 705 IQ TS
OPTICAL SENSOR FOR NITRATE AND TOTAL SUSPENDED SOLIDS (TSS)
Contents

1 Overview
- 1.1 How to use this component operating manual
- 1.2 Field of application
- 1.3 Measuring principle of the sensor NitraVis 70x IQ TS
- 1.4 Structure of the sensor NitraVis 70x IQ TS

2 Safety
- 2.1 Safety information
 - 2.1.1 Safety information in the operating manual
 - 2.1.2 Safety signs on the product
 - 2.1.3 Further documents providing safety information
- 2.2 Safe operation
 - 2.2.1 Authorized use
 - 2.2.2 Requirements for safe operation
 - 2.2.3 Unauthorized use

3 Commissioning
- 3.1 IQ SENSORNET system requirements
- 3.2 Scope of delivery of the NitraVis 70x IQ TS
- 3.3 Installation
 - 3.3.1 Mounting the sensor
 - 3.3.2 Mounting the shock protectors
 - 3.3.3 Connecting the sensor to the IQ SENSORNET
- 3.4 Initial commissioning
 - 3.4.1 General information
 - 3.4.2 Sensor structure
 - 3.4.3 Settings for the main sensor
 - 3.4.4 Settings of the secondary sensor (TSS measurement)

4 Measurement / Operation
- 4.1 Determination of measured values
- 4.2 Measurement operation
- 4.3 Calibration
 - 4.3.1 Overview
 - 4.3.2 User calibration
 - 4.3.3 Sensor check/Zero adjustment
1 Overview

1.1 How to use this component operating manual

The IQ SENSORNET operating manual has a modular structure like the IQ SENSORNET itself. It consists of a system operating manual and the operating manuals of all the components used.

Please file this component operating manual into the ring binder of the system operating manual.
1.2 Field of application

The range of application comprises control, feedback control and monitoring.

Measuring location

- NitraVis 701 IQ TS: Aeration tank or inlet
- NitraVis 705 IQ TS: Outlet

Ultrasound cleaning system

The ultrasound cleaning system ensures low maintenance and long-term reliable measurement operation. The ultrasound source integrated in the sensor excites the measurement windows to produce vibrations in the ultrasound range. The movement of the surface as a result of this prevents the growth of pollution in almost all cases and, thus, ensures reliable measured values during continuous operation.

Compressed air cleaning (option)

The sensor is designed to be equipped with an additional compressed air-driven cleaning system, which supports the ultrasound cleaning system as necessary.

1.3 Measuring principle of the sensor NitraVis 70x IQ TS

The sensor operates according to the measuring principle of UV-VIS-spectrometry.

Any substance present in a measuring solution attenuates a light beam that penetrates the measuring solution. The attenuation (absorbance) of the light beam is measured for individual wavelengths. The wavelength dependent distribution produces the absorbance spectrum.

The wavelength range where an absorbance occurs is characteristic of the substance. The extent of the absorbance depends on the amount of the substance.

The influence of typical interference matrix variants occurring at municipal waste water treatment plants can be eliminated by including the entire absorbance spectrum.

With this measuring principle, measuring does not take place continuously but at intervals.
1.4 Structure of the sensor NitraVis 70x IQ TS

The sensor has a light source (1), a measuring gap (3) to enable the contact of light with the measuring solution, and a detector (5) to measure the attenuated light beam.

The sender of the optical system (2) directs a light beam, the measuring beam (6), through the measuring solution and a second light beam, the reference beam (8), over a distance without measuring solution. The test sample is between both measurement windows (3) in the measuring gap.

The receiver of the optical system (4) directs the measuring beam and reference beam to the detector. In the detector, the light is received by fixed photo diodes.

![Fig. 1-2 Structure of the sensor](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Light source</td>
</tr>
<tr>
<td>2</td>
<td>Sender of the optical system</td>
</tr>
<tr>
<td>3</td>
<td>Measuring gap between the measurement windows</td>
</tr>
<tr>
<td>4</td>
<td>Receiver of the optical system</td>
</tr>
<tr>
<td>5</td>
<td>Detector</td>
</tr>
<tr>
<td>6</td>
<td>Measuring beam</td>
</tr>
<tr>
<td>7</td>
<td>Reference beam</td>
</tr>
<tr>
<td>8</td>
<td>Connection for the optional compressed air cleaning system</td>
</tr>
</tbody>
</table>
2 Safety

2.1 Safety information

2.1.1 Safety information in the operating manual

This operating manual provides important information on the safe operation of the product. Read this operating manual thoroughly and make yourself familiar with the product before putting it into operation or working with it. The operating manual must be kept in the vicinity of the sensor so you can always find the information you need.

Important safety instructions are highlighted in this operating manual. They are indicated by the warning symbol (triangle) in the left column. The signal word (e.g. "CAUTION") indicates the level of danger:

![WARNING](image)

WARNING
indicates a possibly dangerous situation that can lead to serious (irreversible) injury or death if the safety instruction is not followed.

![CAUTION](image)

CAUTION
indicates a possibly dangerous situation that can lead to slight (reversible) injury if the safety instruction is not followed.

NOTE
indicates a situation where goods might be damaged if the actions mentioned are not taken.

2.1.2 Safety signs on the product

Note all labels, information signs and safety symbols on the product. A warning symbol (triangle) without text refers to safety information in this operating manual.

2.1.3 Further documents providing safety information

The following documents provide additional information, which you should observe for your safety when working with the measuring system:

- Operating manuals of other components of the IQ SENSORNET system (power packs, controller, accessories)
- Safety datasheets of calibration and maintenance equipment (e.g. cleaning solutions).
2.2 Safe operation

2.2.1 Authorized use

The authorized use of the NitraVis 70x IQ TS consists of its use as a sensor in the IQ SENSORNET. Only the operation and running of the sensor according to the instructions and technical specifications given in this operating manual is authorized (see chapter 8 TECHNICAL DATA). Any other use is considered unauthorized.

2.2.2 Requirements for safe operation

Note the following points for safe operation:

- The product may only be operated according to the authorized use specified above.
- The product may only be supplied with power by the energy sources mentioned in this operating manual.
- The product may only be operated under the environmental conditions mentioned in this operating manual.
- The product may not be opened.

2.2.3 Unauthorized use

The product must not be put into operation if:

- it is visibly damaged (e.g. after being transported)
- it was stored under adverse conditions for a lengthy period of time (storing conditions, see chapter 8 TECHNICAL DATA).
3 Commissioning

3.1 IQ SENSORNET system requirements

The operation of the NitraVis 70x IQ TS requires the following software versions in the IQ SENSORNET:

- **DIQ/S 28X** Controller software: Version 3.72 or higher
- **DIQ/S 182** Controller software: Version 3.45 or higher
- **MIQ/MC3** Controller software: Version 3.72 or higher
- **MIQ/MC2** Controller software: Version 3.72 or higher
- **MIQ TC 2020 XT** Controller software: Version 3.72 or higher

For cleaning with compressed air via a relay:

- **DIQ/S 28X** Controller software: Version 3.72 or higher
- **DIQ/S 182** Software version: Version 3.45 or higher
- **MIQ/CR3** Software version: Version 2.90 or higher
- **MIQ/R6** Software version: Version 2.90 or higher
- **MIQ/CHV PLUS** Software version: Version 2.90 or higher

3.2 Scope of delivery of the NitraVis 70x IQ TS

The following parts are included in the scope of delivery:

- Sensor NitraVis 70x IQ TS
- Sensor sleeve
- Shock protectors
- Operating manual
3.3 Installation

3.3.1 Mounting the sensor

NOTE
The sensor is an optical precision instrument that should be protected against
shocks. Make sure that the distances to the wall, bottom and other installation
surroundings are sufficient. If necessary, protect the sensor from hitting with the
protective ring provided. Mount any fixing elements only on the stable metal
shaft.

NOTE
Always make sure the surface of the enclosure is not damaged by sharp-edged
objects. The enclosure of the sensor may not touch any metallic objects in order
to prevent contact corrosion.

NOTE
Do not suspend the sensor on the sensor connection cable. Risk of cable break
and water penetration at the cable gland.

A wide range of mounting accessories is available for the installation of the
NitraVis 70x IQ TS (see chapter 6 SPARE PARTS, MAINTENANCE EQUIPMENT,
ACCESSORIES). Thus, all prevalent ways of mounting are possible.

Generally, observe the following general rules when mounting the sensor at the
measuring location:

Horizontal installation

When mounting the sensor horizontally, the measuring gap opening should be
on the side. Thus, any air bubbles can escape upward after cleaning and no sed-
iment can collect in the measuring gap. The sensor should be aligned in parallel
with the flow direction.

![Fig. 3-1 Horizontal installation](image-url)
Vertical installation

For vertical installation, mount the sensor in a position that allows interfering elements in the measuring gap to escape with the current. In the case of vertical installation, the minimum flow rate is 0.2 m/s so the measuring gap is kept clean optimally.

![Measuring gap opening](image)

Fig. 3-2 Vertical installation

Protection against shocks

When installing the sensor, always make sure it cannot knock against a wall or another obstacle. Make sure the safety margins are sufficient (e.g. with suspended mounting).

Mount the enclosed shock protectors (see section 3.3.2). Their soft rubber compound absorbs hard impacts.

![Sensor with mounted shock protectors](image)

Fig. 3-3 Sensor with mounted shock protectors
3.3.2 Mounting the shock protectors

The shock protectors consist of two rings, a cap and four cable ties. To mount the shock protectors, proceed as follows:

1. Plug the cap (pos. 2 in Fig. 3-4) on one of the two rings (pos. 1).
2. Put the assembled unit on the sensor end and fix it with 2 cable ties (pos. 3) as shown in Fig. 3-4.
3. Put the second ring on the cable end of the sensor and fix it with the remaining two cable ties in the same way.
3.3.3 Connecting the sensor to the IQ SENSORNET

Connection cable
A sensor connection cable of the SACIQ or SACIQ SW type is required to connect the sensor. The cable is available in different lengths. Compared to the standard model SACIQ, the SACIQ SW sensor connection cable is optimized regarding its corrosion resistance in seawater and brackish water and adapted for use in conjunction with the NitraVis 70x IQ TS. Information on this and other IQ SENSORNET accessories is given in the YSI catalog and on the Internet.

Are the plug connections dry?
Before connecting the sensor and sensor connection cable, please make sure the plug connections are dry. If moisture gets into the plug connections, first dry the plug connections (dab them dry or blow them dry using compressed air).

NOTE
Do not suspend the sensor on the sensor connection cable but use the suitable mounting equipment. Information on this and other IQ SENSORNET accessories is given in the YSI catalog and on the Internet.
1. Take the protective caps off the plug connections of the sensor and the SACIQ (SW) sensor connection cable and keep them safe.

2. Plug the socket of the SACIQ (SW) sensor connection cable onto the plug head connector of the sensor. At the same time, rotate the socket so that the pin in the plug head connector (1) clicks into one of the two holes in the socket.

3. Then screw the coupling ring (2) of the sensor connection cable onto the sensor up to the stop.

Fig. 3-5 Connect the sensor
3.4 Initial commissioning

3.4.1 General information

CAUTION

Never look into the measuring window or put objects into the measuring window during operation! The emitted UV radiation can damage the eyes!

In the case of authorized use, inadvertent eye contact with the light beam is not possible.

Measuring location

The NitraVis 701 IQ TS sensor is prepared for operation in the aeration tank and calibrated in the factory. For use in the inlet you only have to change the Measuring location setting.

The NitraVis 705 IQ TS sensor is prepared for operation in the outlet of the waste water treatment plant and calibrated in the factory.

The sensor is immediately ready to measure.

How to adjust the settings is described in the following section (section 3.4.3).

Use calibration after initial commissioning

On the basis of a reference measurement ("laboratory value"), check whether the default settings deliver sufficiently accurate measured values or whether you want to carry out a user calibration (see section 4.3 CALIBRATION).
3.4.2 Sensor structure

The physical sensor is the sensor with the instrument or model designation, NitraVis 70x IQ TS. The physical sensor processes the measurement signal (absorbance spectrum) and supplies up to 5 measurement results to the IQ SENSORNET. The measurement results are administrated like 5 sensors that differ in hierarchy as follows:

Main sensor
The sensor for nitrate measurement is the main sensor. It registers on the system under the designation, NitraVis 70x IQ TS and the series number of the physical sensor.

Secondary sensor
The sensor for the measurement of total suspended solids is the secondary sensor. It registers on the system under the designation, SolidVis 70x IQ and the series number of the physical sensor.

Sensor overlapping settings and functions
Some settings and functions are sensor overlapping. Sensor overlapping settings are generally edited in the setting menu of the main sensor. These are the most important sensor overlapping settings and functions:

- Measuring location
- Times of the measuring cycle (Meas. interval, Cleaning duration Air, Adjustment phase etc.)
- Signal smoothing
3.4.3 Settings for the main sensor

Measuring cycle
A measuring cycle consists of the cleaning procedure, the adjustment time for the measuring system and the determination of the measured value. The following graphic demonstrates the relevant settings:

![Measuring cycle graphic](image)

Carrying out settings
Using `<S>`, switch from the measured value display to the main menu of the settings. Then navigate to the setting menu (setting table) of the sensor. The procedure is described in detail in your IQ SENSORNET system operating manual.

Default values are marked in **bold**.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Settings</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring mode</td>
<td></td>
<td>The measured parameter is displayed in the selected citation form. When changing the Measuring mode setting, always check the Measuring location setting.</td>
</tr>
<tr>
<td></td>
<td>• NO3-N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NO3</td>
<td></td>
</tr>
</tbody>
</table>
Measuring location

NitraVis 701 IQ TS:
- **Activation**
- **Inlet**
- **Outlet**

NitraVis 705 IQ TS:
- **Outlet**
 (permanently set)

- **Explanation:** Measurement location or application of the sensor.
 - The possible measurement locations are displayed depending on the currently set measuring mode.
 - The sample matrix on which the calculation of the measured value is based changes with the location of the sensor.
 - When the measurement location is changed, all virtual sensors are deleted.

Measuring range

- **Display of the measuring range**
 (see chapter 8 TECHNICAL DATA).

Cal - # raw value 1

- **Value pairs of the user calibration**
 (see section 4.3.2).

Note: Leave those values unchanged during the initial commissioning.

Cal - ref. value 1

Cal - # raw value 2

Cal - ref. value 2

Zero adjustment

<table>
<thead>
<tr>
<th>Factory</th>
<th>User</th>
</tr>
</thead>
</table>

- **Setting of which zero adjustment is used in the sensor.**
 - Factory zero adjustment or
 - Zero adjustment carried out last

Signal smoothing

| On | Off |

- **Switching on/off the signal smoothing.**
 For details, see *Response time t90.*
Menu item Settings Explanations

Response time t90

| Settings | Response time of the signal smoothing. Depending on the sample matrix, measured values can vary more or less strongly (e.g. due to foreign bodies or air bubbles). The signal filter (here, the Response time t90) reduces the limits of variation of the measured values. The Response time t90 specifies the time after which 90 % of a signal change are displayed. This menu item is only available with: **Signal smoothing = On** The specified time is used as a guide value for low (10 min) to high (60 min) signal smoothing and can deviate from the value that was set. |

Cleaning mode

| Settings | Switching on/off the automatic, time-controlled cleaning function. |

Cleaning type

| Settings | Cleaning methods / adjustment time This menu item is only available with: **Cleaning mode = On** The duration of the cleaning procedure with air is set in the menu item Cleaning duration Air. |

Cleaning duration Air

| Settings | This menu item is only available with: **Cleaning type = Air** and **Cleaning type = Ultrasound+air** For this setting to come into effect, the setting **Settings of outputs and links / Relay function / Sensor controlled / Puls duration / Automatic** has to be selected for the linked relay. Please note the software requirements for the components with relay outputs, MIQ/CR3, MIQ/R6, MIQ/CHVPlus, DIQ/S 182, DIQ/S 28X (see section 3.1). |

Save and quit

| Settings | The system confirms the saving of the settings and the display switches to the next higher level. |
Menu item Settings Explanations

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Settings</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quit</td>
<td>-</td>
<td>The display switches to the next higher level without storing the new settings.</td>
</tr>
</tbody>
</table>

3.4.4 Settings of the secondary sensor (TSS measurement)

Carrying out settings

Using <S>, switch from the measured value display to the main menu of the settings. Then navigate to the setting menu (setting table) of the sensor. The procedure is described in detail in your IQ SENSORNET system operating manual.

Default values are marked in **bold**.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Settings</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring mode</td>
<td>TSS</td>
<td>Display of the measuring mode (TSS = total suspended solids measurement)</td>
</tr>
<tr>
<td>Measuring range</td>
<td>-</td>
<td>Display of the measuring range (see chapter 8 TECHNICAL DATA).</td>
</tr>
<tr>
<td>Cal - # raw value 1</td>
<td></td>
<td>Value pairs of the user calibration for TSS measurement (see section 4.3.2).</td>
</tr>
<tr>
<td>Cal - ref. value 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal - # raw value 2</td>
<td></td>
<td>Note: Leave those values unchanged during the initial commissioning.</td>
</tr>
<tr>
<td>Cal - ref. value 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main sensor</td>
<td></td>
<td>Information that there are further sensor overlapping settings in the setting menu of the relevant main sensor (Meas. interval, Cleaning duration Air, Signal smoothing etc.).</td>
</tr>
<tr>
<td>Save and quit</td>
<td>-</td>
<td>The system confirms the saving of the settings and the display switches to the next higher level.</td>
</tr>
<tr>
<td>Quit</td>
<td>-</td>
<td>The display switches to the next higher level without storing the new settings.</td>
</tr>
</tbody>
</table>
4 Measurement / Operation

4.1 Determination of measured values

During a measurement, the absorbance spectrum of the test sample is recorded and set against the stored absorbance spectrum of a zero adjustment (measurement in ultrapure water). The algorithm for the calculation depends on the selected application and/or the measuring location. The resulting raw value can be adjusted to an independent reference measurement with the aid of a so-called user calibration.
4.2 Measurement operation

CAUTION
Never look into the measuring window or put objects into the measuring window during operation! The emitted UV radiation can damage the eyes!
In the case of authorized use, inadvertent eye contact with the light beam is not possible.

Measured value display

<table>
<thead>
<tr>
<th>CONTROLLER</th>
<th>30 July 2015</th>
<th>08:26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values: all sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>11.00 mg/l N03·N</td>
<td>9.56 #</td>
</tr>
<tr>
<td>C2</td>
<td>15.01 g/l TSS</td>
<td>13.01 #</td>
</tr>
</tbody>
</table>

Raw value, identifiable by #

Measured value

Factors affecting the measured values
The following factors can adversely affect the measurement quality:
- The measuring gap is not sufficiently filled and flowed through by the test sample
- Foreign bodies and air bubbles are in the measuring gap
- Extraordinary changes (interferences) of the sample matrix
- Contaminated measurement windows due to difficult sample matrix
- Damaged measuring windows
- Lacking quality of the zero adjustment, e.g. due to contaminated ultrapure water
- The user calibration is not representative (or erroneous)

4.3 Calibration

4.3.1 Overview
In the delivery condition, the sensor is precalibrated and ready to measure (see section 3.4.1).
There are two types of calibration that are included into the calculation of the
User calibration

With a user calibration you compensate for the influence of the test sample. The user calibration requires a successful Sensor check (H2O dest.) and a valid Zero adjustment.

We recommend to check the current user calibration against independent comparison measurements if you suspect a basic change of the characteristics of the test sample. If the comparison measurements show clear deviations, these can be compensated by a user calibration.

Recalibration after a change of the measuring location

Each time after the application or measurement location was changed, we recommend to carry out a Zero adjustment (and, if the Sensor check (H2O dest.) was not successful, also a Zero adjustment with user calibration if necessary) (With a change of the Measuring location setting).

The data of the user calibration are stored in the IQ SENSORNET controller and thus assigned to the measuring location (not to the sensor). The calibration data of the Zero adjustment are stored in the sensor.

Sensor check (H2O dest.)

The characteristics of a sensor and thus the measured values provided by it change in the course of time.

The reasons for this can be the aging of the sensor, or contamination or mechanical damage of the sensor. Contamination or mechanical damage in the area of the measuring chamber or on the measurement windows affect the measured values.

In spectroscopy, even very small contamination that is not visible to the eye can considerably affect the measured value.

The proper and thorough cleaning of the sensor is the basis for reliable measurement data.

A Sensor check (H2O dest.) determines the condition of the sensor. By checking the sensor with the aid of the Sensor check (H2O dest.) you can rapidly see any changes of the sensor and whether it needs to be cleaned or if any other actions have to be taken.

A Sensor check (H2O dest.) should be carried out twice per year at regular intervals. An extraordinary Sensor check (H2O dest.) should be carried out if you suspect that the sensor has been damaged such as by mechanical shock, or if the measured values do not seem plausible.
Zero adjustment While the Sensor check (H2O dest.) just determines the current state of the sensor, a Zero adjustment can be used to compensate for changes of the sensor. A zero adjustment can be required if, for example, the Sensor check (H2O dest.) is not successful even after the sensor was thoroughly cleaned.

The sensor should always be very thoroughly cleaned prior to a zero adjustment.

If the Zero adjustment is not successful, the sensor is blocked for measurement. A successful Zero adjustment is required for the determination of measured values.

Sensor check (standard) Use the Sensor check (standard) to check the sensor with a standard solution (see chapter 6 SPARE PARTS, MAINTENANCE EQUIPMENT, ACCESSORIES). During the check, the recorded spectrum is compared to a reference spectrum of the standard solution stored in the sensor.
4.3.2 User calibration

Calibration points and value pairs

The adjustment is carried out at one or two points within the measuring range. A value pair is determined at each point. Each value pair consists of the raw value of the NitraVis 70x IQ TS sensor and the corresponding reference value.

Each value pair has to be determined at the same time and place as the test sample as possible. At the time of the calibration, the test sample should be in a condition that is typical of the application.

Selection of calibration points

If the required accuracy is low, the default setting of the first value pair can be adopted unchanged. The first value pair is equivalent to the zero point in this case. The second value pair should be close to the working point of the application. This method results in a single-point calibration.

If the application has to cover a wide value range with high measuring accuracy, both value pairs should be used for calibration. When doing so, the calibration value pairs should be determined and input at the limits of the application range as possible.

You obtain samples of different concentrations e. g. by taking two samples during clearly different conditions of the plant (dry period and rain period).

The measurement results will be ever more accurate the closer the composition of the test sample corresponds to the status at the time of the calibration. If there is a fundamental change of the characteristics of the sample, a new calibration may be necessary.

Storage location of user calibration data

The calibration data of the user calibration are stored in the IQ SENSORnet controller. They are loaded into the sensor during operation and automatically assigned to the replacement sensor if the sensor is exchanged.
Performing a user calibration

Proceed as follows if you want to perform a user calibration:

1. Bring the sensor into the measuring position.
2. Switch to the measured value display with the M key.
3. Use the ▲▼◄► keys to select the NitraVis 70x IQ TS sensor.
4. Call up calibration with the C key. The Maintenance condition: Linked outputs are frozen. window appears.

By activating the maintenance condition, linked outputs remain in their present state. The cleaning and the determination of measured values are switched off. The measured value display shows a flashing, invalid measured value ("----").

5. Confirm the maintenance condition with the OK key.
6. Select the menu item, Single measurement. The measurement is started. After measuring, read the raw value (without dimension) and note it down. In the case of fluctuating values, carry out several measurements and average the individual raw values.
7. Take a sample at the same time as the measurement and as close to the sensor as possible.
8. Determine the reference value and note it down as a value pair together with the raw value.
9. For a two-point calibration: Determine the second value pair (step 6 to step 8).

At least one value pair and a maximum of two value pairs can be entered for a valid calibration. The values must be in ascending order. If they are not in ascending order, a calibration error will occur.

10. NitraVis 70x IQ TS Switch off the maintenance condition (use the ▲▼◄► keys to select the sensor, press the OK key and make the setting in the Anzeige/Optionen menu).
11. Switch to the measured value display with the M key. The measured value stops flashing.
12. Sort the values pairs in ascending order.
13. In the Settings of sensors and diff. sensors menu, enter the value pair or pairs (see the following table).
The entry of calibration values outside the measuring range leads to a calibration error.

Default values are marked in bold.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Settings</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal - # raw value 1</td>
<td>-10000,00 ... 0,00 ... 5000,00</td>
<td>Raw value of the first value pair (lower concentration). For single-point calibration, enter 0.</td>
</tr>
<tr>
<td>Cal - ref. value 1</td>
<td>0,00 ... 5000,00</td>
<td>Reference value of the first value pair (lower concentration). For single-point calibration, enter 0.</td>
</tr>
<tr>
<td>Cal - # raw value 2</td>
<td>-10000,00 ... 0,00 ... 5000,00</td>
<td>Raw value of the second value pair (higher concentration) or raw value of the single-point calibration.</td>
</tr>
<tr>
<td>Cal - ref. value 2</td>
<td>0,00 ... 5000,00</td>
<td>Reference value of the second value pair (higher concentration) or reference value of the single-point calibration.</td>
</tr>
</tbody>
</table>

Calibration evaluation

The entered calibration data are checked for plausibility by the system. The check can have the following results:

<table>
<thead>
<tr>
<th>Display</th>
<th>Meaning/actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value display</td>
<td>Successful new valid calibration value pairs were entered for the sensor.</td>
</tr>
</tbody>
</table>

"----"

Calibration value pairs not accepted. Sensor is blocked for measurement. A log book message is generated. Causes:

- Ascending order not observed.
- At least one value is outside the measuring range.

Information on the contents and structure of the log book and how you can call it up is given in the LOG BOOK chapter of the IQ SENSORNET system operating manual. The user calibration is not recorded in the calibration history. You can, however, view the current value pairs in the Settings of sensors and diff. sensors menu at any time.
4.3.3 Sensor check/Zero adjustment

NOTE
The sensor check or Zero adjustment must be carried out under absolutely clean conditions. If you do not work carefully enough the Zero adjustment can deteriorate the measuring quality.

Ultrapure water (H2O dist.)
As ultrapure water exclusively use distilled or deionized water that is suitable for analysis purposes.

Storage location of the Zero adjustment data
The data of the sensor checks are not stored. The data of the user zero adjustment are stored in the sensor.

Outlet
A successful Sensor check (H2O dest.) is the prerequisite for a valid user calibration. After each Sensor check (H2O dest.) the sensor is evaluated. A changed sensor evaluation proves that the cleaning was effective.

The steps of the sensor check or Zero adjustment are identical except for the used check solutions (ultrapure water or standard solution) and are described together below. The sensor check and Zero adjustment are carried out with the aid of the sensor sleeve.
Flowchart

Cleaning the sensor

Sensor check (H2O dist.)
Assessment number
-40 ... +40 < -40 or
> +40

TEST: MEASUREMENT WINDOWS
- Clean the measurement windows
- Rinse the measuring chamber with ultrapure water several times
- Carry out a sensor check (H2O)

After cleaning several times without significant change of the sensor assessment:
Carry out zero adjustment

Zero adjustment
OK Error

Operating error or defective sensor (Sensor blocked for measurement)

After several zero adjustments:
Reset to:
- Factory zero adjustment or
- Last valid user zero adjustment

Sensor check (Standard)
OK Error

TEST: ELECTRONICS AND OPTICS
After several sensor checks:
Operating error or defective sensor

Sensor OK

Main sensor: Check user calibration
Secondary sensor: Check user calibration

Fig. 4-3 Overview of Sensortest/Zero adjustment and user calibration.
Preparing the sensor check or Zero adjustment

Prepare the sensor check or Zero adjustment as follows:

1. Switch to the measured value display with <M>.
2. Use <▲▼◄►> to select the NitraVis 70x IQ TS sensor.
3. Call up calibration with <C>. The Maintenance condition: Linked outputs are frozen. window appears.

By activating the maintenance condition, linked outputs remain in their present state. The cleaning and the determination of measured values are switched off. The measured value display shows a flashing, invalid measured value ("----").

4. Confirm the maintenance condition with <OK>.
5. Take the sensor out of the test sample.
6. Remove the blind plug or unscrew the compressed air connection from the sensor.
7. Thoroughly clean the sensor enclosure, sensor sleeve and the compressed air channels (see section 5.1 MAINTENANCE). To finish the cleaning procedure, thoroughly rinse the entire sensor with ultrapure water.
8. Mount the cleaned sensor sleeve:
 - Loosen both coupling rings on the sensor sleeve.
 - Put the sensor sleeve on the sensor and align it:
 - The measuring gap is in the center of the sensor sleeve
 - The filling opening of the sensor sleeve and the measuring gap opening of the sensor are offset by 90°
 - Tighten both coupling rings on the sensor sleeve by hand.
9. Put the sensor in a horizontal position on a firm and vibration-free surface. Turn the filling opening of the sensor sleeve upward (Fig. 4-4).

10. Rinse the measuring chamber with ultrapure water at least 3 times.

11. For **Sensor check (H2O dest.)** or **Zero adjustment**:
 Fill the measuring chamber with ultrapure water.

 or

 For **Sensor check (standard)**:
 Fill the measuring chamber with standard solution (see section 6).

12. If there are any air bubbles on the measuring windows remove them by gently knocking on the sensor sleeve with a bar.

 Carry out the intended sensor check or **Zero adjustment** directly after filling the sensor sleeve. If you wait longer, the result of the Sensor check/Zero adjustment will be affected.

13. Select the required option with ▲▼ and <OK>:
 - **Sensor check (H2O dest.)**
 - **Zero adjustment**
 - **Sensor check (standard)**

 A multipart checklist appears. Use it to check once more whether all preparations have been completed.

15. Confirm each checklist with <OK> until the **Start measurement** display appears.
Up to this point, you can break off the calibration procedure at any time with the <ESC> key. The system continues to work with the old calibration data. The maintenance condition, however, has to be switched off again in any case.
After starting the calibration with the <OK> key (step 16.) you can no longer cancel the calibration procedure.

16. Confirm with <OK>.
The measurement is started. After the end of the measurement the result appears. With the Zero adjustment, the result is entered in the calibration history at the same time.

Result after Sensor check (H2O dest.)

<table>
<thead>
<tr>
<th>Rating number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero range</td>
<td>Sensor check (H2O dest.) successful (OK)</td>
</tr>
<tr>
<td>(-40 ... +40)</td>
<td>(0 = no deviation)</td>
</tr>
<tr>
<td>Positive number</td>
<td>Measured values were too low.</td>
</tr>
<tr>
<td>(+40 ... +1000)</td>
<td>Possible cause:</td>
</tr>
<tr>
<td></td>
<td>The measurement windows are contaminated.</td>
</tr>
<tr>
<td>Negative number</td>
<td>Measured values were too high.</td>
</tr>
<tr>
<td>(-40 ... -1000)</td>
<td>Possible cause:</td>
</tr>
<tr>
<td></td>
<td>During the last zero adjustment, the measurement</td>
</tr>
<tr>
<td></td>
<td>windows were contaminated more than during the</td>
</tr>
<tr>
<td></td>
<td>current sensor check.</td>
</tr>
</tbody>
</table>

If the rating number is not in the zero range:
Repeat the cleaning procedure and the Sensor check (H2O dest.) until the rating number no longer changes significantly.
If the rating number is still outside the zero range, a new zero adjustment is necessary.

Result after Zero adjustment

<table>
<thead>
<tr>
<th>Result</th>
<th>Meaning</th>
<th>Sensor released for measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Zero adjustment successful.</td>
<td>yes</td>
</tr>
<tr>
<td>Error</td>
<td>Zero adjustment not successful.</td>
<td>No ("----")</td>
</tr>
</tbody>
</table>

If the result is erroneous, clean the sensor and all equipment once again. Then carry out a new Zero adjustment and when doing so make sure the conditions are absolutely clean.
If no valid zero adjustment is possible under the current conditions, you can restore the readiness for measurement by measuring with an older valid zero adjustment.

To do so, select the Zero adjustment setting in the sensor settings Factory (factory zero adjustment) or User (last valid user zero adjustment).

Then check the measurement results with a Sensor check (standard). Suitable standards (check equipment) for your sensor are available as accessories (see chapter 6).

<table>
<thead>
<tr>
<th>Result after Sensor check (standard)</th>
<th>Result</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
<td>Sensor check (standard) successful.</td>
</tr>
<tr>
<td>Error</td>
<td>Error</td>
<td>Sensor check (standard) not successful.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possible cause: wrong or expired standard</td>
</tr>
</tbody>
</table>

Completing the sensor check or Zero adjustment

After a successful sensor check or Zero adjustment, return to measurement as follows:

17. Confirm the calibration result with <OK>.
18. Confirm the message, "After successful cal ..." with <OK>. The display returns to the measured value display. The measured value flashes because the sensor is still in the maintenance condition.
19. Pour away the ultrapure water or standard solution and remove the sensor sleeve.
20. Screw in the blind plug or compressed air connector and install the sensor at the measuring site.
21. After the Sensor check (standard): Thoroughly rinse the sensor and sensor sleeve with ultrapure water.
22. NitraVis 70x IQ TS Switch off the maintenance condition (use <▲▼◄►> to select the sensor, press <OK> and make the setting in the Display/Options menu).
23. Switch to the measured value display with <M>. The measured value stops flashing.

Store the sensor sleeve in a clean environment, e. g. in a plastic bag, until the next sensor check or Zero adjustment.
5 Maintenance and cleaning

5.1 Maintenance

The UV-VIS- NitraVis 70x IQ TS sensor operates maintenance-free.

5.2 Sensor cleaning

5.2.1 Cleaning agents and accessories

Cleaning agents

To clean the sensor, use the following cleaning agents only:

<table>
<thead>
<tr>
<th>Contamination</th>
<th>Cleaning agents</th>
</tr>
</thead>
</table>
| Water-soluble substances | - Primary cleaning: Tapwater, warm if possible
 (30 - 50 °C)
 - Precision cleaning: Household washing-up liquid + ultrapure water. |
| Lime deposits | 5 % hydrochloric acid * |
| Grease deposits | Mixture of isopropanol and water (approx. 70 % isopropanol) * |

* For the final cleaning prior to a Sensor check or Zero adjustment, only use cleaning agents with purity grade "for analysis". Finally, thoroughly rinse the sensor with ultrapure water.

Accessories

- Sponge
- Plastic-bristled brushes of different sizes. Interdental brushes are suitable for the cleaning of the compressed air channels.
- Flocked cleaning cards (see accessories)
- Lens tissues
- Wash bottle

NOTE

Never use any pressure washer, steam blaster, abrasives or metal brushes to clean the sensor. Risk of damaging the sensor.
5.2.2 General steps to be taken

Depending on the application site and the level of contamination of the sensor as well as the coming job, the cleaning procedure includes the following parts:

- Every cleaning procedure starts with a basic cleaning. It removes tough grime such as incrustation of fouling matter, algae and biological deposits. If the sensor surface might be contaminated with pathogenic germs it should also be disinfected.
- Cleaning the measuring gap: Removal of lime deposits.
- Cleaning the measuring gap: Removal of grease deposits.

Example 1 A heavily contaminated sensor, for which a Sensor check or Zero adjustment should be carried out, must run through all cleaning steps properly. During the cleaning process always keep all surfaces moist to prevent already dissolved contamination and detergents from drying ("working wet-on-wet"). Finally, thoroughly rinse off all remaining cleaning agents with ultrapure water.

Example 2 If the sensor from example 1 should be cleaned on site during a routine visual inspection and should then continue measuring, a basic cleaning might possibly be sufficient.

The quoted examples and the following descriptions are intended to give a general guideline. Due to the sensor's wide range of application, the type and level of contamination can considerably vary. Therefore, the cleaning procedure has to be individually composed. If necessary, individual cleaning steps have to be changed or repeated several times until the result meets the requirements.
5.2.3 Basic cleaning

1. Take the sensor out of the test sample and remove any solid matter deposits and incrustation of fouling matter manually with a brush or sponge.

2. Wash the sensor down with warm tapwater (30 - 50 °C).
 \textit{Note:} Do not use a pressure washer or steam blaster.

3. If the sensor might be contaminated with pathogenic germs it should be disinfected with a surface disinfectant. This also applies to the cable and mounting parts.
 \textit{Note:} Follow the instruction manual of the disinfectant (reaction time!).

4. Remove the blind plug or unscrew the compressed air connection from the sensor.

5. Clean the sensor with soapy water. When doing so, clean the area of the measuring gap and the compressed air channels very thoroughly. The compressed air channels can be cleaned with the aid of interdental brushes and rinsed with soapy water from a wash bottle.

6. Soak the flocked cleaning cards with soapy water and use them to clean the measuring gap as shown in the following figure. Cut suitable strips off the cleaning card to clean the bottom of the measuring gap. Then rinse the sensor with running warm tapwater and finally with a lot of ultrapure water.

7. Finally wipe the measurement window with a lens tissue.

After completing the cleaning procedure, screw in the blind plug or compressed air connection.
5.2.4 Cleaning the measuring gap

To remove lime or grease deposits, use the flocked cleaning cards together with the following detergents:

<table>
<thead>
<tr>
<th>Contamination</th>
<th>Cleaning agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime deposits</td>
<td>Hydrochloric acid 5% for analysis</td>
</tr>
<tr>
<td>Grease deposits</td>
<td>Mixture of isopropanol and water (approx. 70% isopropanol), made of 7 volume parts isopropanol, made of 3 volume parts ultrapure water</td>
</tr>
</tbody>
</table>

Proceeding

- Start by removing any lime deposits.
- Soak a flocked cleaning card with the relevant detergent and use it to clean the measuring windows according to step 6. in section 5.2.3 BASIC CLEANING. If necessary, leave the cleaning card in the measuring gap for a few minutes so the detergent can take effect.
- Thoroughly rinse with ultrapure water the measuring gap and the surrounding areas moistened with detergent.
- Then wipe the measurement window with a lens tissue. The surface of the measurement windows must be free of streaks.
- Protect the cleaned sensor against new contamination.
6 Spare parts, maintenance equipment, accessories

<table>
<thead>
<tr>
<th>General accessories, replacement parts</th>
<th>Description</th>
<th>Model</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration sleeve</td>
<td>VIS/CV</td>
<td>481 074Y</td>
<td></td>
</tr>
<tr>
<td>20 flocked cleaning cards for cleaning the measuring gap</td>
<td>VIS/CT</td>
<td>481 071Y</td>
<td></td>
</tr>
<tr>
<td>Cleaning set:</td>
<td>VIS C/SET</td>
<td>481 079Y</td>
<td></td>
</tr>
<tr>
<td>– 20 flocked cleaning cards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Cleaning solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test equipment</th>
<th>Description</th>
<th>Model</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1 with low concentration</td>
<td>ST-1</td>
<td>481 077Y</td>
<td></td>
</tr>
<tr>
<td>for 5 mm UVVIS/SAC/NOx sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 2 with high concentration</td>
<td>ST-2</td>
<td>481 078Y</td>
<td></td>
</tr>
<tr>
<td>for 1 mm UVVIS/SAC/NOx sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components for the optional compressed air cleaning system</th>
<th>Description</th>
<th>Model</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed air cleaning set with 15 m compressed-air hose, to be connected to a valve module or Cleaning Air Box</td>
<td>SET/AP</td>
<td>481 075Y</td>
<td></td>
</tr>
<tr>
<td>Active valve module (does not require a free relay output in the IQ SENSORNET system)</td>
<td>MIQ/CHV PLUS</td>
<td>480 018Y</td>
<td></td>
</tr>
<tr>
<td>Valve module for the IQ SENSORNET system 182 (external relay and compressed air supply)</td>
<td>DIQ/CHV</td>
<td>472 007Y</td>
<td></td>
</tr>
<tr>
<td>Air compressor to be triggered by relay, power supply 115 V AC</td>
<td>Cleaning Air Box - 115 VAC</td>
<td>480 017Y</td>
<td></td>
</tr>
<tr>
<td>Air compressor to be triggered by relay, power supply 230 V AC</td>
<td>Cleaning Air Box - 230 VAC</td>
<td>480 019Y</td>
<td></td>
</tr>
</tbody>
</table>
Mounting accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Model</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting set for horizontal installation with EH/F 170 swing mounting assembly</td>
<td>VIS Set/EH</td>
<td>481 073Y</td>
</tr>
<tr>
<td>Set for the mounting of UVVIS/SAC/NOx sensors to the S 200 electrode floater</td>
<td>VIS Set/F</td>
<td>481 080Y</td>
</tr>
<tr>
<td>Flow-through armature</td>
<td>VIS FT-1</td>
<td>480 080Y</td>
</tr>
</tbody>
</table>

Information on other IQ SENSORNET accessories is given in the YSI catalog and on the Internet.
What to do if...

<table>
<thead>
<tr>
<th>"----" display (invalid measured value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
</tr>
<tr>
<td>– User calibration values entered incorrectly</td>
</tr>
</tbody>
</table>
| – * Sensor check (H2O dest.) or * Zero adjustment or * Sensor check (standard) defective | – Repeat *
| | – Sensor check (H2O dest.) or * Zero adjustment or * Sensor check (standard). Check conditions, especially cleanliness (section 4.3.3) |
| – Zero adjustment still erroneous after several trials | – Contact service |
| – Unknown | – See log book |

<table>
<thead>
<tr>
<th>Implausible measured values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
</tr>
<tr>
<td>– Erroneous user calibration</td>
</tr>
<tr>
<td>– Substantial change of test sample (sample matrix)</td>
</tr>
<tr>
<td>– Measurement windows dirty</td>
</tr>
<tr>
<td>– Sensor setting wrong</td>
</tr>
</tbody>
</table>
| – Optical system maladjusted, e.g. due to inadmissible mechanical shock | – Carry out *
| | – Sensor check (H2O dest.) or * Zero adjustment or * Sensor check (standard) |
Drifting measured values

<table>
<thead>
<tr>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning efficiency too low - measurement windows becoming more and more contaminated</td>
<td>- Clean the measurement windows (section 5.2.4)</td>
</tr>
<tr>
<td></td>
<td>- Use other cleaning method</td>
</tr>
<tr>
<td></td>
<td>- Select different measurement location</td>
</tr>
<tr>
<td></td>
<td>- Set longer cleaning duration</td>
</tr>
<tr>
<td></td>
<td>- Set more frequent cleaning procedures</td>
</tr>
<tr>
<td></td>
<td>- Install optional compressed air cleaning device</td>
</tr>
<tr>
<td>Failure of the optional compressed air cleaning system</td>
<td>- Clean the measurement windows (section 5.2.4)</td>
</tr>
<tr>
<td></td>
<td>- Check all components of the compressed air cleaning system (compressor, compressed air line, sensor, rinsing openings)</td>
</tr>
<tr>
<td>Substantial change of test sample (sample matrix)</td>
<td>- Carry out new user calibration</td>
</tr>
</tbody>
</table>

Display of OFL

<table>
<thead>
<tr>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range exceeded</td>
<td>- Check process</td>
</tr>
<tr>
<td>Foreign matter in the measuring gap</td>
<td>- Clean the measuring gap (section 5.2.3)</td>
</tr>
<tr>
<td>Erroneous user calibration</td>
<td>- Repeat user calibration. Make sure the samples for comparison are representative.</td>
</tr>
</tbody>
</table>

Measured values fluctuating heavily

<table>
<thead>
<tr>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas bubbles in front of the measurement windows</td>
<td>- Check the position within the process and the installation position</td>
</tr>
</tbody>
</table>

Measured values too low or too high

<table>
<thead>
<tr>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas bubbles in front of the measurement windows</td>
<td>- Check the installation position of the sensor</td>
</tr>
<tr>
<td>Measurement windows dirty</td>
<td>- Clean the measurement windows</td>
</tr>
<tr>
<td>Display of ERROR</td>
<td>Cause</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>– Sensor not correctly connected</td>
</tr>
<tr>
<td></td>
<td>– Load at a power supply module too high</td>
</tr>
<tr>
<td></td>
<td>– IQ SENSORNET cable towards the NitraVis 70x IQ TS too long (voltage drop too great)</td>
</tr>
</tbody>
</table>
| | – Electrical connection between power supply module and NitraVis 70x IQ TS is interrupted | – Check the cable connection step-by-step starting with the power supply module, and replace any defective cable sections.
– Check the contacts on the MIQ modules (stack mounting). Clean any dirty contacts. Carefully bend back contact springs that have been pressed flat or bent (pay attention to sufficient spring tension) |
8 Technical data

8.1 Measurement characteristics

Measuring principle
Spectrophotometric Absorption measurement; integrated microprocessor electronics, shielded 2-wire connection for power and data transmission.

Light source
Lamp type: Xenon flashlamp

Detector
Photo diodes: 256

Wavelengths range
200 - 720 nm

<table>
<thead>
<tr>
<th>Measuring gap (optical layer thickness)</th>
<th>NitraVis 701 IQ TS</th>
<th>NitraVis 705 IQ TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mm gap width</td>
<td>1 mm</td>
<td>5 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nitrate measurement</th>
<th>Measuring location</th>
<th>Measuring mode</th>
<th>Measuring range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mm gap width</td>
<td>Inlet</td>
<td>NO3</td>
<td>0.0 ... 300.0 mg/L</td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO3-N</td>
<td>0.00 ... 60.00 mg/L</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td></td>
<td>Activation</td>
<td>NO3</td>
<td>0.0 ... 300.0 mg/L</td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO3-N</td>
<td>0.00 ... 60.00 mg/L</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td></td>
<td>Outlet</td>
<td>NO3</td>
<td>0.0 ... 750.0 mg/L</td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO3-N</td>
<td>0.0 ... 150.0 mg/L</td>
<td>0.1 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nitrate measurement, 5 mm gap width</th>
<th>Measuring location</th>
<th>Measuring mode</th>
<th>Measuring range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outlet</td>
<td>NO3</td>
<td>0.0 ... 250.0 mg/L</td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO3-N</td>
<td>0.00 ... 50.00 mg/L</td>
<td>0.01 mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSS measurement, 1 mm gap width</th>
<th>Measuring location</th>
<th>Measuring mode</th>
<th>Measuring range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inlet</td>
<td>TSS</td>
<td>0.00 ... 15.00 g/L</td>
<td>0.01 g/L</td>
</tr>
<tr>
<td></td>
<td>Activation</td>
<td>TSS</td>
<td>0.00 ... 20.00 g/L</td>
<td>0.01 g/L</td>
</tr>
<tr>
<td></td>
<td>Outlet</td>
<td>TSS</td>
<td>0 ... 4500 mg/L</td>
<td>1 mg/L</td>
</tr>
</tbody>
</table>
Application characteristics

Suitability and areas of application
Municipal wastewater with a low proportion of industrial wastewater

<table>
<thead>
<tr>
<th>Measuring medium</th>
<th>pH value</th>
<th>4 - 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flow rate</td>
<td>< 3 m/s</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>0 °C ... + 45 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(32 °F ... + 113 °F)</td>
</tr>
</tbody>
</table>

Pressure resistance
Sensor with connected SACIQ (SW) sensor connection cable:

- Max. admissible overpressure: 105 Pa (1 bar)

The sensor meets all requirements according to article 3(3) of 97/23/EC ("pressure equipment directive").

Type of protection
Sensor with connected SACIQ (SW) sensor connection cable:

- IP X8, 1 bar (10^5 Pa)

Immersion depth

- min: The measuring gap must be filled with test sample.
- max: 10 m depth

Operating position
Any

The quoted measuring ranges are nominal measuring ranges that are theoretically possible. In practice, real measuring ranges exist that are given by the limits of photometric determination. The limits are significantly influenced by the light scattering due to solids and the absorption of accompanying substances (sample matrix). Therefore, no fixed measuring range can be determined beforehand.
8.3 General data

Dimensions (in mm)

Weight
Approx. 3.8 kg (without shock protectors and without sensor connection cable)
Approx. 4.8 kg (with shock protectors but without sensor connection cable)

Connection technique
Connection via SACIQ (SW) sensor connection cable

Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor shaft</td>
<td>Titan Grade 2</td>
</tr>
<tr>
<td>Center piece</td>
<td>PEEK</td>
</tr>
<tr>
<td>End cap</td>
<td>PEEK</td>
</tr>
<tr>
<td>Measurement window</td>
<td>Sapphire</td>
</tr>
<tr>
<td>Plug head connector housing</td>
<td>POM</td>
</tr>
<tr>
<td>Plug, 3-pole</td>
<td>ETFE (blue) Tefzel®</td>
</tr>
<tr>
<td>Protection ring</td>
<td>POM</td>
</tr>
</tbody>
</table>

Storage temperature
-10 °C ... +50 °C (14 ... 122 °F)
Meter safety

<table>
<thead>
<tr>
<th>Applicable norms</th>
</tr>
</thead>
<tbody>
<tr>
<td>- EN 61010-1</td>
</tr>
<tr>
<td>- UL 61010-1</td>
</tr>
<tr>
<td>- CAN/CSA C22.2#61010-1</td>
</tr>
<tr>
<td>- IEC 62471</td>
</tr>
</tbody>
</table>

Test certificates

- cETLus, CE

![ETL US Certified](image)

Conforms to ANSI/UL 61010-1
Certified to CAN/CSA C22.2#61010-1

8.4 Electrical data

| Nominal voltage | Max. 24VDC
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>via the IQ SENSORNET (for more details, see chapter TECHNICAL DATA of the IQ SENSORNET system operating manual)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power consumption</th>
<th>8 W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(maximum power consumption)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3.5 W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(medium power consumption)</td>
</tr>
</tbody>
</table>

If the system is supplied with power via a MIQ/WL PS o DIQ/S 28X, only the medium power consumption has to be taken into account.

| Protective class | III |
9 Indexes

9.1 Explanation of the messages

This chapter contains a list of all the message codes and related message texts that can occur in the log book of the IQ SENSORNET system for the NitraVis 70x IQ TS sensor.

Information on the contents and structure of the log book and the structure of the message code is given in the LOG BOOK chapter of the IQ SENSORNET system operating manual.

The last three digits of the message code form the component code. It identifies the component (active component) that caused the message:

Some error messages contain an internal error code, starting with "#".

<table>
<thead>
<tr>
<th>Module code</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A1</td>
<td>NitraVis 701 IQ</td>
</tr>
<tr>
<td>3A2</td>
<td>NitraVis 705 IQ</td>
</tr>
<tr>
<td>3A7</td>
<td>SolidVis 701 IQ</td>
</tr>
<tr>
<td>3A8</td>
<td>SolidVis 705 IQ</td>
</tr>
<tr>
<td>541</td>
<td>BasicVis IQ</td>
</tr>
</tbody>
</table>
9.1.1 Error messages

<table>
<thead>
<tr>
<th>Message code</th>
<th>Message text</th>
</tr>
</thead>
</table>
| EA2541 | Sensor temperature too high!
* Check process and application |
| EA3541 | Sensor temperature too low!
* Check process and application |
| EAF541 | Optical measuring range exceeded
* Check process (TSS or measured value too high)
* Select measuring location free of air bubbles
* Remove foreign matter from measuring gap
* Clean sensor
* Optimize cleaning settings
* Switch on signal smoothing, increase response time |
| EAI541 | Zero adjustment erroneous
* Clean the sensor and sensor sleeve repeatedly
* Position the sensor sleeve according to operating manual
* Rinse the measuring chamber with ultrapure water several times
* Fill the measuring chamber with ultrapure water
* Repeat the zero adjustment |
| EAM3Ax | Meas. range exceeded or undercut
* Check process |
| EC33Ax | User calibration erroneous,
Check raw value / reference value pairs:
* Set all values within the measuring range
(see operating manual)
* Enter value pairs in ascending order |
| EI1541 | Operational voltage too low
* Check installation and cable lengths, Follow installation instructions
* Power supply module(s) overloaded, add power supply module(s)
* Check terminal and module connections
* Defective components, replace components |
| EI2541 | Operational voltage too low, no operation possible
* Check installation and cable lengths, Follow installation instructions
* Power supply module(s) overloaded, add power supply module(s)
* Check terminal and module connections
* Defective components, replace components |
| ES2541 | Humidity too high in sensor
* Contact service |
| ES3541 | Failure optical measurement: deviation in reference channel too high
* Execute zero adjustment |
<table>
<thead>
<tr>
<th>Message code</th>
<th>Message text</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES4541</td>
<td>Overflow optical measurement</td>
</tr>
<tr>
<td></td>
<td>Execute zero adjustment</td>
</tr>
<tr>
<td>ES5541</td>
<td>Failure optical measurement: hardware</td>
</tr>
<tr>
<td></td>
<td>Contact service</td>
</tr>
<tr>
<td>ES6541</td>
<td>Failure optical measurement: software</td>
</tr>
<tr>
<td></td>
<td>Contact service</td>
</tr>
<tr>
<td>ES7541</td>
<td>Failure optical measurement: software BIOS</td>
</tr>
<tr>
<td></td>
<td>Contact service</td>
</tr>
</tbody>
</table>
9.1.2 Informative messages

<table>
<thead>
<tr>
<th>Message code</th>
<th>Message text</th>
</tr>
</thead>
</table>
| IA23Ax | * Calculation of negative concentrations
* Perform user calibration or check user calibration |
| IAC541 | * Zero adjustment was successfully carried out
* Carry out sensor check
* If required, carry out new user calibration |
| IC3541 | Factory calibration has been activated. Make sure the sensor operates correctly. |
| IC4541 | The last valid user zero adjustment was activated. Make sure the sensor operates correctly. |
| IC5541 | Invalid user zero adjustment was replaced by last valid user calibration.
Caution! Wrong measured values possible. Carry out a new successful zero adjustment to make sure the sensor operates correctly. |
| IC6541 | The invalid user zero adjustment was replaced by the factory zero adjustment.
Caution! Wrong measured values possible. Check whether the sensor operates correctly or carry out a new successful user zero adjustment. |
9.2 Status info

The status info is a coded piece of information on the current status of a sensor. Each sensor sends this status info to the controller. The status info of sensors consists of 32 bits, each of which can have the value 0 or 1.

The bits 0 - 15 are reserved for general information. The bits 16 - 21 are reserved for internal service information.

You obtain the status info:

- via a manual query in the Einstellungen/Settings/Service List of all components menu (see system operating manual)
- by an automated query
 - from a superordinate process control (e.g. when connected to the Profibus)
 - of the IQ Data Server (see operating manual of the IQ SENSORNET software pack)

The evaluation of the status info, e.g. in the case of an automated query, has to be made individually for each bit.

Status Info

<table>
<thead>
<tr>
<th>Status bit</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 0</td>
<td>Component hardware defective</td>
</tr>
<tr>
<td>Bit 1</td>
<td>Component hardware defective xxx</td>
</tr>
<tr>
<td>Bit 2</td>
<td>Optical measuring range exceeded</td>
</tr>
<tr>
<td>Bit 3-31</td>
<td>-</td>
</tr>
</tbody>
</table>
10 Appendix: Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbance (Absorption)</td>
<td>Attenuation of the light beam when it penetrates the sample.</td>
</tr>
<tr>
<td>Adjusting</td>
<td>To manipulate a measuring system so that the relevant value (e.g. the displayed value) differs as little as possible from the correct value or a value that is regarded as correct, or that the difference remains within the tolerance.</td>
</tr>
<tr>
<td>Calibration</td>
<td>Comparing the value from a measuring system (e.g. the displayed value) to the correct value or a value that is regarded as correct. Often, this expression is also used when the measuring system is adjusted at the same time (see adjusting).</td>
</tr>
<tr>
<td>Calibration value pair</td>
<td>Value pair consisting of the raw value measured by the NitraVis 70x IQ TS sensor, and a reference value measured e.g. by a laboratory determination. The calibration value pairs are the result of the user calibration.</td>
</tr>
<tr>
<td>Concentration</td>
<td>Mass or amount of a dissolved substance per volume, e.g. in g/L or mol/L.</td>
</tr>
<tr>
<td>Measured parameter</td>
<td>The measured parameter is the physical dimension determined by measuring, e.g. pH, conductivity or D.O. concentration.</td>
</tr>
<tr>
<td>Measured value</td>
<td>The measured value is the special value of a measured parameter to be determined. It is given as a combination of the numerical value and unit (e.g. 3 m; 0.5 s; 5.2 A; 373.15 K). The measured value is determined from the raw value taking into account the data from a user calibration. The measured value is displayed together with the raw value in the measured value display.</td>
</tr>
<tr>
<td>Measuring gap</td>
<td>The measuring gap is between the two measurement windows. In the measuring gap, the light beam penetrates the test sample.</td>
</tr>
<tr>
<td>Measuring system</td>
<td>The measuring system comprises all the devices used for measuring, e.g. measuring instrument and sensor. In addition, there is the cable and possibly an amplifier, terminal box and armature.</td>
</tr>
<tr>
<td>NO2-N</td>
<td>The proportion of nitrogen coming from nitrite.</td>
</tr>
<tr>
<td>NO3-N</td>
<td>The proportion of nitrogen coming from nitrate.</td>
</tr>
<tr>
<td>Raw value</td>
<td>The raw value is determined from the spectrum while taking into account the data from the zero adjustment. The raw value is displayed on the right side of the measured value in the measured value display.</td>
</tr>
<tr>
<td>Reference sample</td>
<td>Random sample of the test sample for comparative chemical-analytical laboratory analyses intended for user calibration.</td>
</tr>
<tr>
<td>Resolution</td>
<td>Smallest difference between two measured values that can be displayed by a meter.</td>
</tr>
<tr>
<td>Sample matrix</td>
<td>Composition of the test sample of different individual substances.</td>
</tr>
<tr>
<td>Test sample</td>
<td>Designation of the test sample ready to be measured.</td>
</tr>
<tr>
<td>Ultrapure water (H₂O dist.)</td>
<td>Ultrapure water is distilled or deionized water suitable for analysis purposes.</td>
</tr>
<tr>
<td>Zero adjustment</td>
<td>Measuring and saving the absorbance spectrum of ultrapure water. Defines the zero points in the spectrum for all wavelengths. The light beam is not alleviated at the zero point. The zero point influences the calculation of the raw value.</td>
</tr>
</tbody>
</table>
11 Contact Information

11.1 Ordering & Technical Support

Telephone: (800) 897-4151
(937) 767-7241
Monday through Friday, 8:00 AM to 5:00 PM ET

Fax: (937) 767-1058

Email: environmental@ysi.com

Mail: YSI Incorporated
1725 Brannum Lane
Yellow Springs, OH 45387
USA

Internet: www.ysi.com

When placing an order please have the following information available:

YSI account number (if available) Name and Phone Number
Model number or brief description Billing and shipping address
Quantity Purchase Order or Credit Card

11.2 Service Information

YSI has authorized service centers throughout the United States and Internationally. For the nearest service center information, please visit www.ysi.com and click ‘Support’ or contact YSI Technical Support directly at 800-897-4151.

When returning a product for service, include the Product Return form with cleaning certification. The form must be completely filled out for an YSI Service Center to accept the instrument for service. The Product Return form may be downloaded at www.ysi.com and clicking on the ‘Support’ tab.
1) The tissue in plants that brings water upward from the roots;
2) a leading global water technology company.

We’re 12,500 people unified in a common purpose: creating innovative solutions to meet our world’s water needs. Developing new technologies that will improve the way water is used, conserved, and re-used in the future is central to our work. We move, treat, analyze, and return water to the environment, and we help people use water efficiently, in their homes, buildings, factories and farms. In more than 150 countries, we have strong, long-standing relationships with customers who know us for our powerful combination of leading product brands and applications expertise, backed by a legacy of innovation.

For more information on how Xylem can help you, go to www.xyleminc.com