YSI Modelo 55

Sistema Portable de Medición de Oxígeno Disuelto y Temperatura

Manual de Operación
TABLA DE CONTENIDO

SECCIÓN 1 Descripción General...1

SECCIÓN 2 Especificaciones ...2

SECCIÓN 3 Preparación del Medidor...3

3.1 Desempacando ...3
3.2 Tarjeta de Garantía ...3
3.3 Baterías ..3
3.4 Cámara de Calibración / Almacenamiento ..4
3.5 Correa de Mano ..4
3.6 El Gabinete del Medidor ...4

SECCIÓN 4 Preparación de la Sonda..5

4.1 Descripción ..5
4.2 Selección de la Membrana Correcta ...5
4.3 Preparación de la Sonda ..5
4.4 Instalación de la Membrana ..6
4.5 Operación de la Sonda y Precauciones ..7

SECCIÓN 5 Calibración ...8

4.1 Antes de Calibrar ..8
4.2 El Proceso de Calibración ...8

SECCIÓN 6 Principios de Operación ..10

6.1 Comentarios sobre los Errores en la Medición10

SECCIÓN 7 Problemas Típicos y su Solución ..12

SECCIÓN 8 Garantía y Reparación ..14

8.1 Instrucciones de Limpieza ...17
8.2 Instrucciones de Empacado ...18

SECCIÓN 9 Notificaciones Requeridas ..19

SECCIÓN 10 Accesorios y Partes de Reemplazo20

Apéndice A - Tabla de Solubilidad ...21
Apéndice B - Carta de Conversión ...23
SECCIÓN 1 DESCRIPCIÓN GENERAL

El Sistema Portable de Medición de Oxígeno Disuelto YSI modelo 55 es un medidor digital, robusto, basado en microprocesador, con la sonda de Oxígeno Disuelto unida directamente al instrumento.

El Modelo 55 de YSI se diseñó para usarse en campo y esta disponible con cable de 3.5, 7.5 o 15 mts. El cuerpo de la sonda esta construido con acero inoxidable para agregar robustez, peso para hundimiento y durabilidad. La Pantalla de Despliegue de Cristal Líquido (LCD) es grande para facilitar la lectura y esta equipado con iluminación de fondo para usarse en la oscuridad o en áreas con poca iluminación.

El microprocesador del Modelo 55 permite que el sistema se calibre fácilmente presionando unas cuantas teclas. Además, el microprocesador realiza una rutina de auto-diagnóstico cada vez que se enciende el instrumento. La rutina de auto-diagnóstico proporciona información útil acerca del funcionamiento de la circuitería del instrumento y de la calidad de las lecturas que se obtienen. Para ver la lista de las características del diagnóstico, vea 0 SECCIÓN 7 Problemas Típic.

El sistema despliega simultáneamente temperatura en ºC y Oxígeno Disuelto en mg/L (milligramos por litro) o % de saturación de aire. El sistema solamente requiere una calibración, no importa que despliegue se use. Se puede cambiar de % de saturación a mg/L oprimiendo únicamente la tecla "MODE".

En el instrumento esta construida una cámara de calibración en la que se puede colocar una esponja pequeña humedecida para proporcionar un medio ambiente humedo de aire saturado, el cual es ideal para calibrar en aire. Esta cámara también se diseñó para almacenar la sonda cuando se almacena o transporta el instrumento. Cuando se almacena la sonda en la cámara, el medio ambiente humedo prolongara el desempeño efectivo de la membrana y la vida de la sonda misma.

El instrumento se energiza con seis baterías alcalínas tamaño AA. Un conjunto de baterías alcalínas nuevas proporciona aproximadamente 100 horas de operación continua. Cuando se necesiten remplazar las baterías, en el LCD se mostrará el mensaje “LO BAT”.

El gabinete del instrumento modelo 55 es resistente a salpicaduras. Ud. puede operar el modelo 55 bajo lluvia constante sin que se dañe el instrumento.
SECCIÓN 2 ESPECIFICACIONES

Medio Ambiente de Operación de la Sonda.

Medio : Agua dulce, agua salada (mar), agua contaminada
Temperatura : -5 a +45°C
Profundidad : 0 a 3.5 , 0 a 7.5 0a 15 mts. (dependiendo de la longitud del cable)

Temperatura de Medio Ambiente de Operación / Almacenamiento del medidor : -10 a +50°C

Material: ABS, Acero Inoxidable, Acrílico, y otros materiales.

Dimensiones:
- Altura : 24.13 cm
- Espesor : 5.6 cm
- Ancho : 8.89 cm
- Peso : 0.77 kg

Alimentación : 9 volts c.d. - 6 Baterías Alcalínas Tamaño AA (incluídas)

Aproximadamente 100 horas de operación con cada paquete de baterías nuevas

Resistencia al agua : Satisface o excede los estándares IP65

Pruebas extensas del Modelo 55 de YSI sugieren el siguiente desempeño típico :

Temperatura
- Tipo de Sensor Termistor
- Rango -5 a +45°C
- Exactitud ±0.2°C
- Resolución 0.1°C

Oxígeno Disuelto en % de Saturación de aire
- Tipo de Sensor Membrana polarográfica cubierta
- Rango 0 a 200 % de Saturación de aire
- Exactitud ±2% de Saturación de aire
- Resolución 0.1 % de Saturación de aire

Oxígeno Disuelto en mg/L
- Tipo de Sensor Calculado del % de Saturación de aire, temperatura y salinidad
- Rango..................0 a 20 mg/L
- Exactitud ±0.3 mg/L
- Resolución 0.01 mg/L
SECCIÓN 3 PREPARACIÓN DEL MEDIDOR

3.1 DESEMPACANDO

Cuando desempaque el Sistema Portable de Medición de Oxígeno Disuelto y Temperatura nuevo, Modelo 55 de YSI por primera vez, revise la lista de empaque para asegurarse que recibió todo lo que debe de tener. Si falta algo o esta dañada alguna pieza, llame al distribuidor con quien lo adquirió. Si no sabe quien de los distribuidores autorizados le vendió el sistema llame a Servicios al cliente de YSI (YSI customer Service) al 800-765-4974 o al 937-767-7241, y con gusto se le proporcionará la ayuda que requiera.

3.2 TARJETA DE GARANTÍA

Antes de hacer otra cosa, llene por favor la Tarjeta de Garantía y envíela a YSI. Así registrará su compra de éste instrumento de calidad en nuestro sistema de computo. Una vez que se registra su adquisición, Ud. recibirá un servicio rápido y eficiente en el caso de que cualquier parte de su Modelo 55 de YSI requiera reparación.

3.3 BATERÍAS

Es poco lo que tiene que hacer para preparar su Modelo 55 de YSI y que quede listo para usarse. Primero localice las seis baterías Alcalínas tamaño AA incluídas en el paquete. Use una moneda pequeña o un desarmador para remover el tornillo que se encuentra en la base del instrumento. Este tornillo sujeta la cubierta de la cámara de las baterías, la cual esta marcada con las palabras “OPEN “ (ABIERTO) y “CLOSE” (CERRADO).

NOTA: En algunos modelos, el tornillo de la cubierta de las baterías se puede desatornillar con la mano (puede no requerirse el dearmador).

Hay una etiqueta pequeña en la parte interna de cada lado de las dos mangas de la cámara de las baterías. Esta etiquetas ilustran la forma correcta como se deben de instalar las baterías en cada manga

NOTA: Es muy importante que las baterías se instalen únicamente como se ilustra. El instrumento no funcionará si las baterías se instalan incorrectamente.

Encienda el instrumento presionando momentaneamente la tecla “ON/OFF” en el panel frontal del instrumento. Se activarán todo los segmentos del (LCD) por pocos segundos, seguido por un procedimiento de auto prueba que tardará algunos segundos más. Durante esta secuencia de auto prueba al encender, el microprocesador del instrumento verifica que la circuitería este trabajando. Si se detecta un
problema, se desplegará un mensaje de error **continuo**. Si el instrumento no opera, consulte el capítulo 0
SECCIÓN 7 Problemas Típic.

NOTA: La información en la pantalla no tendrá significado dado que la sonda todavía no se ha preparado.

Ud. también puede llevar el instrumento a un cuarto oscuro y, con el instrumento encendido, mantener oprimida la tecla “LIGHT”. La luz de fondo del instrumento deberá de iluminar la pantalla de tal forma que los datos se puedan leer fácilmente.

3.4 CÁMARA DE CALIBRACIÓN/ALMACENAMIENTO

El modelo 55 tiene construída en el gabinete una cámara. Esta cámara proporciona un área de almacenamiento ideal para la sonda durante el transporte y/o un período largo de tiempo de no uso. Si se observa dentro de la cámara, notará que hay una pequeña esponja en el fondo. Ponga cuidadosamente de 3 a 6 gotas de agua limpia en la esponja. Gire el instrumento de tal forma que salga de la cámara el exceso de agua que haya quedado. La esponja humeda crea un medio ambiente de agua con 100% de saturación de aire para la sonda, lo que es ideal para la calibración de Oxígeno Disuelto.

3.5 CORREA DE MANO

La correa de mano se diseño para permitir una operación confortable del Modelo 55 con un mínimo esfuerzo. Si se ajusta correctamente la correa de mano, es poco probable que el instrumento se caiga o se deslice de la mano.

Para ajustar la correa de mano en la parte tracera del instrumento, desabroche la cubierta de piel y separa las dos tiras Velcro. Coloque sus manos entre el medidor y la correa y ajuste la longitud de la correa de tal forma que su mano se encuentre comoda en el lugar. Presione las dos tiras Velcro para que se vuelvan a unir y abroche la cubierta de piel.

3.6 EL GABINETE DEL MEDIDOR

El gabinete del medidor esta sellado de fábrica y no se debe de intentar abrir, excepto por técnicos de servicio autorizados. **No intente separar las 2 partes del gabinete del medidor ya que puede dañar el instrumento, romper el sello a prueba de agua, y perder la garantía.**
SECCIÓN 4 PREPARACIÓN DE LA SONDA

4.1 DESCRIPCIÓN

La sonda de Oxígeno Disuelto del modelo 55 de YSI es un sensor polarográfico no desmontable, diseñada específicamente para éste instrumento. Los cables de la sonda están disponibles en longitudes de 3.5, 7.5 y 15 mts.

4.2 SELECCIÓN DE LA MEMBRANA CORRECTA

El kit de Membranas Estándar Modelo 5775 de YSI se suministra con el Modelo 55 de YSI. Este kit contiene 30 membranas de 1 milésima de pulgada (0.001”) y un frasco de solución de Cloruro de Potasio (KCl). YSI recomienda las Membranas Modelo 5775 para la mayoría de las aplicaciones.

Para condiciones especiales, se tiene disponible una membrana de 0.5 milésimas de pulgada (0.0005”). Ordene el kit de Membranas de alta sensitividad Modelo 5776 de YSI. Esta membranas de medio espesor mejoran el tiempo de medición en bajas temperaturas y ayuda a suprimir corrientes de fondo en niveles muy bajos de Oxígeno disuelto. Cuando se colectan datos rutinariamente en muestras a temperaturas abajo de 15°C y en niveles de Oxígeno disuelto abajo de 20% de Saturación de aire, la baja corriente de señal resultante del uso de membranas estándar tiende a magnificar la señal de fondo constante inherente de la sonda. Al Usar membranas de alta sensitividad en estas situaciones, reducirá el porcentaje de error debido a las mencionada corriente de fondo de la sonda.

Para condiciones de monitoreo en períodos de tiempo largo ÚNICAMENTE, hay disponible una membrana de espesor doble, 2 milésimas de pulgada (0.002”). Para estas aplicaciones, ordene el kit de Membranas Modelo 5685 de YSI, el cual incluye membranas y electrolito.

4.3 PREPARACIÓN DE LA SONDA

La sonda del Modelo 55 de YSI se embarca seca. Antes de usar el Modelo 55, se debe de remover la membrana protectora de la sonda, llenar el depósito de la misma con solución de KCl y se debe de instalar una membrana nueva. Siga las instrucciones siguientes para instalar la solución de KCl y la membrana.

Para preparar la instalación de una membrana nueva para la Sonda de Oxígeno disuelto del Modelo 55 de YSI:

1. Desatornille la cubierta protectora del sensor de la Sonda.
2. Remueva la membrana vieja y el “O-ring” de sujeción.
3. Enjuague cuidadosamente la punta del sensor y el depósito de KCl con agua destilada.
4. Prepare el electrólito de acuerdo a las indicaciones en el frasco de la solución de KCl.

4.4 INSTALACIÓN DE LA MEMBRANA

A. Coloque una membrana entre su dedo pulgar y el cuerpo de la sonda. Agregue electrólito a la sonda hasta que cubra completamente el cátodo de oro.

NOTA: Maneje el material de la membrana con cuidado, tocándola solo en los extremos.

B. Con los dedos pulgar e índice de la otra mano, sujete el extremo libre de la membrana.

C. Con un movimiento continuo, estire la membrana hacia arriba, sobre y hacia abajo del otro lado del sensor. Estirando la membrana coloquela en el contorno de la punta del sensor. Asegure el extremo de la membrana con el dedo índice mientras que continua sosteniendo la sonda.

D. Asegure el extremo de la membrana con el dedo índice mientras que continua sosteniendo la sonda.

E. Coloque el “O-ring” sobre el extremo de la sonda, con cuidado de no tocar la superficie de la membrana. No deben de quedar arrugas en la membrana o burbujar de aire atrapadas bajo la misma. Las arrugas que queden se pueden remover jalando suavemente la membrana por sus ejes que están después del “Oring”.

F. Corte la parte excedente de la membrana con tijeras o con una cuchilla filosa. Revise que el sensor de temperatura de acero inoxidable no este cubierto por el excedente de la membrana.

G. Limpie el exceso del KCl. Enjuague cuidadosamente el acero inoxidable con agua destilada para prevenir la corrosión. Reinstale la cubierta protectora del sensor. El sensor se debe de mantener en un medio ambiente humedo (tal como la cámara de calibración) entre mediciones y cuando no se esta usando.
4.5 OPERACIÓN DE LA SONDA Y PRECAUCIONES

1. La vida de la membrana depende del trato que se le dé. La membrana durará un tiempo largo si se instala apropiadamente y se trata con cuidado. Las lecturas erróneas son resultado de arrugas, daño, holgura, contaminación de la membrana o por burbujas grandes en el electrólito. Si se presentan lecturas erróneas o hay evidencia de daño en la membrana, se deberá de remplazar la membrana y la solución KCl. El intervalo promedio de remplazo es de dos a cuatro semanas.

2. Si la membrana se cubre de bacterías (consumen Oxígeno) o algas (desarrollan Oxígeno), pueden ocurrir lecturas erróneas.

3. Cloruros, Dióxido Sulfuroso, Oxido Nítrico, y Oxido Nitroso pueden afectar la lectura comportándose semejante al Oxígeno en la sonda. Si se sospecha de lecturas erróneas, es necesario determinar si estos gases son la causa.

4. Evite cualquier medio ambiente que contenga sustancias que puedan atacar los materiales de la sonda. Algunas de estas sustancias son ácidos concentrados, causticas, y solventes fuertes. Los materiales que constituyen la sonda que están en contacto con la muestra incluyen Teflón, FEP, Plástico, Acrílico, Caucho EPR, Acero Inoxidable, Epoxico, Polietiremido, y Poliuretano cubriendo el cable.

5. Para una operación correcta de la sonda, el cátodo de oro siempre debe de brillar. Si está decolorado o manchado (lo cual puede resultar del contacto con ciertos gases), o plateado (lo cual puede resultar del uso extenso con membranas arrugadas o flojas), se debe de restablecer la superficie del oro. Para restablecer el cátodo, se puede regresar el instrumento a la fábrica o se puede limpiar usando el kit de Reacondicionamiento de la Sonda Modelo 5680 de YSI. Nunca use químicos o abrasivos no suministrados con este kit.

6. También es posible que el ánodo de Plata se contamine, lo cual evitará que se logre obtener una calibración exitosa. Para limpiar el ánodo, remueva el “O-ring” y la membrana y remoje la sonda por toda la noche en Hidróxido de Amonio. Posteriormente, enjuague la punta del sensor y el depósito de KCl con agua desionizada, agregue solución nueva de KCl, e instale una membrana nueva y el “O-ring”. Encienda el instrumento y permita que el sistema se estabilice por al menos 30 minutos. Si, después de varias horas, todavía no se puede calibrar, envíe el Modelo 55 de YSI a un centro de servicio autorizado para su servicio.

7. Si el “O-ring” esta flojo o deteriorado, remplacelo con el “O-ring” que se suministra en el Paquete de “O-ring” Modelo 5945 de YSI.

8. Para evitar que el electrólito se seque, almacene la sonda en la cámara de calibración/almacenamiento con la esponja humeda.
SECCIÓN 5 CALIBRACIÓN

La calibración de Oxígeno disuelto se debe de hacer en un medio ambiente con un contenido de Oxígeno conocido. Dado que la cantidad de Oxígeno en la atmósfera es conocida, la hace un medio excelente para realizar la calibración (en 100% de humedad relativa). La cámara de calibración/almacenamiento contiene una esponja húmeda que crea un medio ambiente de agua con 100% de saturación de aire.

5.1 ANTES DE CALIBRAR
Antes de calibrar el Modelo 55 de YSI, se deben de hacer completos los procedimientos de los capítulos “Preparación del Medidor” y “Preparación de la Sonda”.

Para calibrar exactamente el Modelo 55 de YSI necesitará saber la siguiente información:

- La altitud aproximada de la región en la cual Ud. se localiza.
- La Salinidad aproximada del agua que se analizará. El agua dulce tiene una salinidad de aproximadamente cero. El agua de mar tiene una salinidad de aproximadamente 35 partes por millar (ppm). Si no se tiene la certeza de cual es el valor de la salinidad de la muestra de agua, use el Medidor YSI Modelo 30 de Salinidad-Conductividad-Temperatura, para determinarla.

5.2 EL PROCESO DE CALIBRACIÓN

1. Asegúrese de que la esponja que está dentro de la cámara de calibración del instrumento esté húmeda. Inserte la sonda dentro de la cámara de calibración.

2. Encienda el instrumento presionando la tecla “ON/OFF” en el panel frontal del instrumento. Espere a que se establezcan las lecturas de Oxígeno disuelto y de temperatura (usualmente se requieren 15 minutos después de encender el instrumento).

3. Para entrar al menú de calibración, use dos dedos para presionar y liberar las teclas “UP ARROW” y “DOWN ARROW” al mismo tiempo.

4. En seguida en la pantalla se le solicitará el valor de la altitud en cientos de pies. Use las teclas de flecha para incrementar o reducir el valor de la altitud.

EJEMPLO: Metiendo el número 12 indica 1200 pies.
5. Cuando aparezca en la pantalla, presione la tecla “ENTER”. El Modelo 55 ahora deberá mostrar “CAL” en el lado izquierdo inferior de la pantalla, el valor de la calibración deberá de aparecer en el lado derecho inferior de la pantalla y la lectura actual de Oxígeno disuelto (DO) (antes de la calibración) deberá estar en el despliegue principal de la pantalla.

6. Asegúrese que la lectura de DO está estable, entonces presione la tecla “ENTER”. En la pantalla se le pedirá el valor aproximado de la salinidad del agua a analizar. Ud. puede dar cualquier número de 0 a 40 ppm de salinidad. Use las teclas de flechas para incrementar o reducir el valor de la salinidad. Cuando aparezca el valor correcto de la salinidad en la pantalla (cero para agua dulce), presione la tecla “ENTER”. El instrumento regresará al modo de operación normal.

Una vez que se complete el proceso de calibración, las únicas teclas que permanecerán operando son “MODE”, “LIGHT” y “ON/OFF”. Se puede cambiar la lectura de DO del modo en mg/L al modo de % de saturación de aire o viceversa presionando la tecla “MODE”. Si está trabajando en un área oscura y tiene dificultad para tomar la lectura de la pantalla, presione y retenga la tecla “LIGHT” para activar la luz de fondo del Modelo 55 de YSI.

Para mejores resultados:
- Cada vez que apague el Modelo 55, recalibre antes de hacer mediciones.
- Calibre en una temperatura dentro de ±10°C de la temperatura de la muestra.
SECCIÓN 6 PRINCIPIOS DE OPERACIÓN

El sensor consiste de un cuerpo de acrílico con cátodo circular de oro situado en el extremo exterior. Del lado interno del cátodo hay una pequeña cámara que contiene un ánodo de plata poroso. Para operarse, esta cámara se llena con una solución de KCl como electrolito que contiene una pequeña cantidad de sulfactante, para mejorar la acción de la humidificación.

Una membrana delgada permeable, colocada sobre el sensor, aisla los electrodos del medio ambiente, permitiendo el paso de los gases. Cuando se aplica un voltaje de polarización a los electrodos del sensor, el Oxígeno que ha pasado a través de la membrana reacciona en el cátodo causando un flujo de corriente.

El paso del Oxígeno a través de la membrana es proporcional a la diferencia de presiones a través de ella. Dado que el Oxígeno se consume rápidamente en el cátodo, se puede asumir que la presión del Oxígeno del lado interno de la membrana es cero. Por lo tanto, la fuerza que causa que el Oxígeno se difunda a través de la membrana es proporcional a la presión parcial del Oxígeno del lado exterior de la membrana. Como ésta presión parcial varía, entonces la difusión del Oxígeno a través de la membrana también varía. Esto causa que la corriente del sensor cambie proporcionalmente.

Es importante notar que el Oxígeno disuelto en la muestra se consume durante la prueba. Por lo tanto es esencial que la muestra se agite continuamente en el extremo del sensor. Si se estanca, sus lecturas serán artificialmente bajas. La agitación se puede hacer mecánicamente moviendo la muestra alrededor del extremo de la sonda. La velocidad del agitador debería ser de al menos de 30 cm por segundo.

6.1 COMENTARIOS SOBRE LOS ERRORES DE MEDICIÓN

Hay tres tipos básico de errores al medir Oxígeno Disuelto. Los errores del tipo 1 están relacionados a las limitaciones por diseño del instrumento y a las tolerancias de los componentes del instrumento. Estos son principalmente la linealidad del medidor y las tolerancias de las resistencias. Los errores del tipo 2 se deben a las tolerancias de la exactitud de la sonda, principalmente la señal de fondo, linealidad del sensor y las variaciones del coeficiente de temperatura de la membrana. Los errores del tipo 3 están relacionados a la habilidad del operador para determinar las condiciones al momento de la calibración. Si la calibración se realiza bajo condiciones bien conocidas, se reducen este tipo de errores.

Errores del Tipo 1
A. Error por linealidad del medidor: ±1% de error a plena escala, o ±0.15 mg/L
B. Error por componentes de la circuitería: ±0.05 mg/L

Errores del Tipo 2
A. Errores de DO causados por compensación de temperatura para mediciones en ±10°C de temperatura de calibración: ±1% (0.08 mg/L en 25°C)
B. Errores de DO causados por error en la medición de temperatura: Un máximo de ±0.2°C de error de temperatura es igual a ±0.5% (0.04 mg/L en 25°C).

Errores del Tipo 3
A. Altitud:
Error del Operador: Un error de 300 mts en altitud (cuando se calibra) es igual a un error de aproximadamente 3.6% en el nivel de 10mg/L.

Error del Instrumento: El máximo error de DO causado al calibrar altitud en incrementos de 30 cm: ±0.18% (< 0.015 mg/L en 25°C).

B. Humedad:

Si la calibración se realiza en humedad menor del 100% se presentan errores. El peor caso posible sería calibrar en humedad del 0%. El error varía con la temperatura de calibración como sigue:

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>Error de Calibración en 0% de humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>0.09 mg/L</td>
</tr>
<tr>
<td>10°C</td>
<td>0.14 mg/L</td>
</tr>
<tr>
<td>20°C</td>
<td>0.21 mg/L</td>
</tr>
<tr>
<td>30°C</td>
<td>0.33 mg/L</td>
</tr>
<tr>
<td>40°C</td>
<td>0.50 mg/L</td>
</tr>
</tbody>
</table>

Approximación del Error

Es improbable que el error actual en cualquier medición sea el error máximo posible. Una mejor aproximación se obtiene usando el cálculo de raíz cuadrática media (rms):

\[
\text{error (rms)} = \pm \sqrt{a^2 + b^2 + 2a^2 + 2b^2 + 3a^2 + 3b^2} \text{mg/L}
\]

NOTA: Este cálculo es para un caso de condiciones extremas.
SECCIÓN 7 PROBLEMAS TÍPICOS Y SU SOLUCIÓN

NOTA: Un valor erróneo mostrado brevemente en los primeros segundos después de encender el instrumento NO indican un problema.

<table>
<thead>
<tr>
<th>SINTOMA</th>
<th>CAUSA POSIBLE</th>
<th>ACCION</th>
</tr>
</thead>
</table>
| 1. El instrumento no enciende | A. Voltaje de baterías bajo
B. Batería instaladas incorrectamente
C. El medidor requiere servicio | A. Cambie las baterías.
B. Revise la polaridad de las baterías.
C. Regrese el sistema a servicio. |
| 2. No se puede calibrar el instrumento | A. La membrana está dañada o falló
B. El ánodo del sensor está oscuro o falló.
C. El cátodo del sensor está manchado
D. El sistema requiere servicio | A. Cambie la membrana y KCl.
B. Limpie el ánodo.
C. Limpie el cátodo.
D. Regrese el sistema a servicio. |
| 3. El instrumento se "cierra" | A. El instrumento recibió un golpe
B. Las baterías están bajas o dañadas
C. El sistema requiere servicio | A. Retire la tapa de la batería, espere 15 segundos para restablecer, reinstate la tapa.
B. Cambie las baterías.
C. Regrese el sistema a servicio. |
| 4. Las lecturas del instrumento son inexactas | A. La altitud en la calibración es incorrecta.
B. El valor de la salinidad es incorrecto
C. El agua no es de 100% de saturación de aire durante el procedimiento de calibración.
D. La membrana falló o se dañó
E. El ánodo del sensor falló o se oscureció.
F. El cátodo del sensor está manchado
G. El sistema requiere servicio | A. Recalibre con el valor correcto.
B. Recalibre con el valor correcto.
C. Humedezca la esponja, colóquela en la cámara de cal y recalque.
D. Remplace la membrana.
E. Limpie el ánodo.
F. Limpie el cátodo.
G. Regrese el sistema a servicio. |
| 5. La pantalla muestra "LO BAT" o El despliegue principal de la pantalla muestra "OFF" | A. Las baterías están bajas o dañadas | A. Cambie las baterías |
| 6. El despliegue principal de la pantalla muestra "undr" | A. La corriente del sensor es demasiado baja para calibrar
B. El sistema requiere servicio | A. Cambie la membrana y KCl
B. Limpie el ánodo
C. Limpie el cátodo
D. Regrese el sistema a servicio |
<p>| 7. El despliegue principal de la pantalla muestra "OVEr" | A. La concentración de O$_2$ en la muestra es mayor a 20 mg/L | A. Recalibre usando el valor correcto de compensación de altitud y salinidad |</p>
<table>
<thead>
<tr>
<th>SINTOMA</th>
<th>CAUSA POSIBLE</th>
<th>ACCION</th>
</tr>
</thead>
</table>
| 8. El despliegue principal de la pantalla muestra "Er 0" | B. La corriente del sensor es demasiado alta para calibrar
C. El sistema requiere servicio | B. Cambie la membrana y KCl
C. Limpie el cátodo
D. Limpie el ánodo
E. Regrese el sistema a servicio |
| | A. Fuera de rango la corriente de calibración
B. En la auto prueba del instrumento se detecta en el sensor un voltaje no apropiado durante la calibración | A. Cambie la membrana y KCl
B. Limpie el ánodo
C. Limpie el cátodo
D. Regrese el sistema a servicio |
| 9. El despliegue principal de la pantalla muestra “Er 1” o, El despliegue principal de la pantalla muestra “Err” (En el despliegue secundario se tiene “ra”) | A. La auto prueba del instrumento detecta una variación en RAM
B. El sistema requiere servicio | A. Remueva la tapa de la batería, espere 15 segs para que se restablezca. Reinstale la tapa
B. Regrese el sistema a servicio |
| 10. El despliegue principal tiene “Er 2” o El despliegue principal tiene “Err” (En el despliegue secundario se tiene “ro”) | A. La auto prueba del instrumento detecta una variación en “checksum” en ROM
B. El sistema requiere servicio | A. Remueva la tapa de la batería, espere 15 segs para que se restablezca. Reinstale la tapa.
B. Regrese el sistema a servicio |
| 11. El despliegue principal tiene “Er 3” o El despliegue principal tiene "FAIL." (En el despliegue secundario se tiene “eep”) | A. La auto prueba del instrumento detecta una función mal del sistema o un componente dañado
B. El sistema requiere servicio | A. Remueva la tapa de la batería, espere 15 segs, reinstale la tapa.
B. Regrese el sistema a servicio |
| 12. El despliegue principal tiene “Er 4” | A. La concentración de O$_2$ de la muestra es mayor a 20 mg/L
B. El sistema requiere servicio | A. Recalibre usando compensación de altitud y salinidad correctas
B. Cambie la membrana y KCl
C. Limpie el ánodo
D. Limpie el cátodo
E. Regrese el sistema a servicio |
| 13. El despliegue principal tiene “Er 5” | A. La concentración de O$_2$ desplegada es menor a 0.5 mg/L.
B. El sistema requiere servicio | A. Recalibre usando compensación de altitud y salinidad correctas
B. Regrese el sistema a servicio |
| 14. El despliegue principal tiene “Er 6” | A. La concentración de O$_2$ desplegada está por arriba del rango (modo %)
B. El sistema requiere servicio | A. Recalibre usando compensación de altitud y salinidad correctas
B. Cambie la membrana y KCl
C. Limpie el ánodo
D. Limpie el cátodo
E. Regrese el sistema a servicio |
<p>| 15. El despliegue principal tiene “Er 7” | A. La concentración de O$_2$ desplegada es menor -3.0% | A. Recalibre usando compensación de altitud y salinidad correctas |</p>
<table>
<thead>
<tr>
<th>SINTOMA</th>
<th>CAUSA POSIBLE</th>
<th>ACCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. El despliegue secundario tiene "Er 8" o, El despliegue principal tiene “OVer”. (El despliegue secundario tiene “ovr”)</td>
<td>A. La temperatura de la muestra es mayor a +45.9°C B. El sistema requiere servicio</td>
<td>A. Reduzca la temperatura de la muestra B. Regrese el sistema a servicio</td>
</tr>
<tr>
<td>17. El despliegue secundario tiene"Er 9" o, El despliegue principal tiene “OVer”. (El despliegue secundario tiene “udr”)</td>
<td>A. La temperatura de la muestra es menor a -5°C B. El sistema requiere servicio</td>
<td>A. Incremente la temperatura de la muestra B. Regrese el sistema a servicio</td>
</tr>
<tr>
<td>18. El despliegue principal tiene "Er A"</td>
<td>A. Corto circuito en el ensamble sonda/cable B. El sistema requiere servicio</td>
<td>A. Cambie el ensamble sonda/cable B. Regrese el sistema a servicio</td>
</tr>
</tbody>
</table>
SECCIÓN 8 GARANTÍA Y REPARACIÓN

Los medidores de Oxígeno Disuelto y Temperatura están garantizados por 2 años a partir de la fecha de adquisición del usuario final, contra defectos en materiales y mano de obra. Las sondas y los cables están garantizados por 1 año a partir de la fecha de adquisición del usuario final contra defectos en materiales y mano de obra. Dentro del período de garantía, YSI reparará o remplazará, a su criterio, libre de cargo, cualquier producto que YSI determine sea cubierto por ésta garantía.

Para ejercer ésta garantía, escriba o llame a su representante local de YSI, o contacte Servicio al Cliente de YSI en Yellow Springs, Ohio. Envíe el producto y la prueba de su adquisición, con el pago previo de la transportación, al Centro Autorizado de Servicio seleccionado por YSI. Se hará la reparación o el remplazo y se regresará el producto., previo pago del transporte. Los productos reparados o remplazados se garantizan por el período de tiempo restante de la garantía original, o por 90 días a partir de la fecha de reparación o remplazo.

Límite de la Garantía

Esta garantía no aplica a cualquier producto YSI cuyo daño o falla haya sido causados por (i) fallas al instalar, operar o usar el producto en desacuerdo con las instrucciones escritas de YSI, (ii) abuso o mal uso del producto, (iii) falla al mantener el producto de acuerdo con las instrucciones escritas o el procedimiento estándar industrial, (iv) cualquier reparación no apropiada del producto, (v) uso por parte del cliente o alguien autorizado por el cliente, de partes no apropiadas o defectuosas al reparar el equipo o al aplicar el servicio, o (vi) por modificación del producto en cualquier forma no autorizada expresamente por YSI.

ESTA GARANTÍA ES EN LUGAR DE TODAS LAS OTRAS GARANTÍAS, EXPRESADAS O IMPLÍCITAS, INCLUYENDO CUALQUIER GARANTÍA COMERCIAL O DE ADECUACIÓN PARA UN PROPÓSITO PARTICULAR. LA RESPONSABILIDAD DE YSI BAJO ESTA GARANTÍA SE LIMITA AL REMPLAZO O REPARACIÓN DEL PRODUCTO, Y ESTA DEBERÁ SER SU ÚNICO Y EXCLUSIVO REMEDIO PARA CUALQUIER PRODUCTO DEFECTUOSO CUBIERTO POR ESTA GARANTÍA. EN NINGÚN CASO YSI SERÁ RESPONSABLE DE DAÑOS ESPECIALES, INDIRECTOS, INCIDENTALES O CONSECUENTES QUE RESULTEN DE CUALQUIER PRODUCTO DEFECTUOSO CUBIERTO POR ESTA GARANTÍA.
North and East Region
YSI Incorporated • Repair Center • 1725 Brannum Lane • Yellow Springs, Ohio • 45387 • Phone: (800) 765-4974 • (937) 767-7241 • E-Mail: info@ysi.com

South Region
C.C. Lynch & Associates • 212 E. 2nd Street • Suite 203 • Pass Christian, Mississippi • 39571 • Phone: (800) 333-2252 • (228) 452-4612 • Fax: (228) 452-2563

West Region
EnviroServices & Repair • 1110 Burnett Avenue, Suite D • Concord, CA • 94520 • Phone: (800)550-5875 • Fax: (510)674-8655

Central Region
HydroTech Services, LLC • 4910 Iris Street Wheat Ridge, CO • 80033 • Phone: (877)467-0800 • Fax: (303) 467 0742 • E-Mail: 100735.423@compuserve.com
INTERNATIONAL SERVICE CENTERS

YSI Incorporated • Repair Center • 1725 Brannum Lane • Yellow Springs, Ohio • 45387 • Phone: (937) 767-7241 • E-Mail: info@ysi.com

Lynchford House • Lynchford Lane • Farnborough • Hampshire • GU146LT • Phone: (44-1252) 514711 • Fax: (44-1252) 511855 • Tlx: 858210

Sakura – Building 6-5-6-13 • Shinjuku, Shinjuku-ku, Tokyo • 160 • Phone: (81-3) 5360-3561 • Fax: (81-3) 5360-3565

SPECIALTY SERVICE CENTERS

Aquaculture

Aquatic Eco Systems, Inc. • 1767 Benbow Court • Apopka, Florida • Phone: (407) 886-3939 • Fax: (407) 886-6787

Aquacenter • 166 Seven Oaks Road • Leland, Mississippi • 38756 • Phone: (601) 378-2861 • Fax: (601) 378-2862

Wastewater

Q.C. Services • P.O. Box 68 • Harrison, Maine • 04040 • Phone: (207) 583-2980

Q.C. Services • P.O. Box 14831 • Portland, Oregon • 97293 • Phone: (503) 236-2712
NOTA: Los equipos expuestos a materiales tóxicos, radioactivos, o biológicos se deben de limpiar antes de que se envíen a reparación. Se asume que la contaminación biológica es causada por cualquier instrumento, sonda, u otro dispositivo que se ha usado con fluidos o tejidos corporales, o con agua de desecho. Se asume que la contaminación radioactiva es causada por cualquier instrumento, sonda u otro dispositivo que se ha usado cerca de cualquier fuente radioactiva.

Si un instrumento, sonda o cualquier otra parte se regresa o presenta para su servicio sin un Certificado de Limpieza, y si en nuestra opinión respresenta un riesgo potencial biológico o radioactivo, nuestro personal de servicio se reservará el derecho de negar el servicio hasta que se haga la limpieza, descontaminación, y la certificación se haya completado. Se contactará a quien haya enviado el equipo para recibir instrucciones de como enviar el equipo. Los costos de envío serán responsabilidad de quien envió el equipo.

Cuando se solicite el servicio, ya sea en las instalaciones del cliente o en YSI, se deben de realizar los siguientes pasos para asegurar la integridad del personal de YSI.

1. Descontamine todas las superficies expuesta, incluyendo los contenedores, en una forma apropiada para cada dispositivo, con alcohol isopropílico al 70%, o una solución de 4 litros de agua corriente con ¼ de litro de blanquedor de ropa es más que suficiente para la mayoría de los casos de descontaminación.

2. El usuario deberá de tomar las precauciones necesarias para prevenir la contaminación radioactiva y deberá de aplicar los procedimientos apropiados de descontaminación si hubiese exposición a radioactividad.

3. Si hubo exposición, el cliente deberá de certificar que se llevó a cabo la descontaminación y que no se detecta radioactividad con el equipo de medición de la misma.

4. Cualquier equipo que se envíe al Centro de Reparación de YSI, se debe de empacar en forma adecuada para prevenir que se dañe.

5. La limpieza se debe de completar y cetificar en cualquier producto antes de enviarlo a YSI.
8.2 INSTRUCCIONES DE EMPACADO

1. Limpie y descontamine todas las partes para asegurar la integridad de quien ejecuta el envío.
2. Complete e incluya el Certificado de Limpieza.
3. Coloque el producto en una bolsa de plastico para mantenerlo libre de polvo y material de empaque.
4. Use un cartón grande, de preferencia el original, y rodee completamente el equipo de material de empaque.
5. Asegurelo por el valor de remplazo del producto.

<table>
<thead>
<tr>
<th>Certificado de Limpieza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organización:</td>
</tr>
<tr>
<td>Departamento:</td>
</tr>
<tr>
<td>Dirección:</td>
</tr>
<tr>
<td>Ciudad:</td>
</tr>
<tr>
<td>Modelo De Equipo:</td>
</tr>
<tr>
<td>Contaminante (si se conoce):</td>
</tr>
<tr>
<td>Agente(s) de Limpieza Usado (s):</td>
</tr>
<tr>
<td>Certificado de Descontaminación Radioactiva:</td>
</tr>
<tr>
<td>(Responda solamente si ha estado expuesto a radioactividad):</td>
</tr>
<tr>
<td>Si:</td>
</tr>
<tr>
<td>Certificado de Limpieza por:</td>
</tr>
<tr>
<td>Nombre:</td>
</tr>
</tbody>
</table>
SECCIÓN 9 NOTIFICACIONES REQUERIDAS

La Comisión Federal de Comunicaciones define este producto como un dispositivo de computo y requiere de las siguientes notificaciones:

Este equipo genera y usa energía en el rango de radio frecuencia y requiere que se instale y use apropiadamente, puede causar interferencia en la recepción de radio y de televisión. No se garantiza que no ocurrirá interferencia en una instalación particular. Si éste equipo causa interferencia en la recepción de radio o televisión, lo cual se puede determinar prendiendo y apagando el equipo, el usuario deberá de tratar de corregir la interferencia por medio de una o más de las siguientes medidas:

• Re-orientar la antena receptora
• Re-colocar la computadora con respecto al receptor
• Alejar la computadora del receptor
• Conectar la computadora en un contacto de tal forma que ésta y el receptor se encuentren en rama diferentes del circuito eléctrico

Las siguientes partes están disponibles en YSI o cualquier Distribuidor autorizado por YSI.

<table>
<thead>
<tr>
<th>Número de Orden YSI</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>5775</td>
<td>Kit de Membranas Estándar y KCl (1 mil)</td>
</tr>
<tr>
<td>5776</td>
<td>Kit de Membranas de Alta Sensitividad y KCl (.5 mil)</td>
</tr>
<tr>
<td>5685</td>
<td>Kit de Membranas de Media Sensitividad (2 mil)</td>
</tr>
<tr>
<td>5680</td>
<td>Kit de Reacondicionamiento de Sonda (Herramienta de Lijado y Discos para Limpiar el Cátodo)</td>
</tr>
<tr>
<td>5945</td>
<td>Kit de “O-ring”</td>
</tr>
<tr>
<td>5520</td>
<td>Estuche para Transportación</td>
</tr>
<tr>
<td>055205</td>
<td>Ensamble de Cable y Sonda de Remplazo (3.5 mts)</td>
</tr>
<tr>
<td>055206</td>
<td>Ensamble de Cable y Sonda de Remplazo (7.5 mts)</td>
</tr>
<tr>
<td>055229</td>
<td>Ensamble de Cable y Sonda de Remplazo (15 mts)</td>
</tr>
<tr>
<td>055201</td>
<td>Remplazo de Cubierta Frontal de Gabinete</td>
</tr>
<tr>
<td>055242</td>
<td>Remplazo de Cubierta Tracera de Gabinete</td>
</tr>
<tr>
<td>055244</td>
<td>Kit de Cubierta de Batería</td>
</tr>
<tr>
<td>055204</td>
<td>Remplazo de Agarredera de Gabinete y Tornillo</td>
</tr>
<tr>
<td>055219</td>
<td>Esponja de la Cámara de Almacenamiento</td>
</tr>
<tr>
<td>115603</td>
<td>Tarjeta Principal</td>
</tr>
</tbody>
</table>

APÉNDICE A - TABLA DE SOLUBILIDAD

Solubilidad del Oxígeno en mg/L en Agua Expuesta a Agua-en Aire Saturado en 760 mm de Hg de Presión.

Salinidad = Medida de la cantidad de sales disueltas en agua.

Chlorinidad = Medida del contenido de Cloruros, por masa, de agua.

\[S(°/100) = 1.80655 \times \text{Chlorinidad (°/100)} \]

<table>
<thead>
<tr>
<th>Temp °C</th>
<th>Chlorinidad: 0</th>
<th>Salinidad: 0</th>
<th>5.0 ppm</th>
<th>9.0 ppm</th>
<th>10.0 ppm</th>
<th>18.1 ppm</th>
<th>15.0 ppm</th>
<th>27.1 ppm</th>
<th>20.0 ppm</th>
<th>36.1 ppm</th>
<th>25.0 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>14.62</td>
<td>13.73</td>
<td>12.89</td>
<td>12.10</td>
<td>11.36</td>
<td>10.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>14.22</td>
<td>13.36</td>
<td>12.55</td>
<td>11.78</td>
<td>11.07</td>
<td>10.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>13.83</td>
<td>13.00</td>
<td>12.22</td>
<td>11.48</td>
<td>10.79</td>
<td>10.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>13.46</td>
<td>12.66</td>
<td>11.91</td>
<td>11.20</td>
<td>10.53</td>
<td>9.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>13.11</td>
<td>12.34</td>
<td>11.61</td>
<td>10.92</td>
<td>10.27</td>
<td>9.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>12.77</td>
<td>12.02</td>
<td>11.32</td>
<td>10.66</td>
<td>10.03</td>
<td>9.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>12.45</td>
<td>11.73</td>
<td>11.05</td>
<td>10.40</td>
<td>9.80</td>
<td>9.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>12.14</td>
<td>11.44</td>
<td>10.78</td>
<td>10.16</td>
<td>9.58</td>
<td>9.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>11.84</td>
<td>11.17</td>
<td>10.53</td>
<td>9.93</td>
<td>9.36</td>
<td>8.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>11.56</td>
<td>10.91</td>
<td>10.29</td>
<td>9.71</td>
<td>9.16</td>
<td>8.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>11.29</td>
<td>10.66</td>
<td>10.06</td>
<td>9.49</td>
<td>8.96</td>
<td>8.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>11.03</td>
<td>10.42</td>
<td>9.84</td>
<td>9.29</td>
<td>8.77</td>
<td>8.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>10.78</td>
<td>10.18</td>
<td>9.62</td>
<td>9.09</td>
<td>8.59</td>
<td>8.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td>10.54</td>
<td>9.96</td>
<td>9.42</td>
<td>8.90</td>
<td>8.41</td>
<td>7.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>10.31</td>
<td>9.75</td>
<td>9.22</td>
<td>8.72</td>
<td>8.24</td>
<td>7.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>10.08</td>
<td>9.54</td>
<td>9.03</td>
<td>8.54</td>
<td>8.08</td>
<td>7.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0</td>
<td>9.87</td>
<td>9.34</td>
<td>8.84</td>
<td>8.37</td>
<td>7.92</td>
<td>7.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td>9.67</td>
<td>9.15</td>
<td>8.67</td>
<td>8.21</td>
<td>7.77</td>
<td>7.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>9.47</td>
<td>8.97</td>
<td>8.50</td>
<td>8.05</td>
<td>7.62</td>
<td>7.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>9.28</td>
<td>8.79</td>
<td>8.33</td>
<td>7.90</td>
<td>7.48</td>
<td>7.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp °C</td>
<td>Clorinidad: 0</td>
<td>5.0 ppm</td>
<td>10.0 ppm</td>
<td>15.0 ppm</td>
<td>20.0 ppm</td>
<td>25.0 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salinidad: 0</td>
<td>9.0 ppm</td>
<td>18.1 ppm</td>
<td>27.1 ppm</td>
<td>36.1 ppm</td>
<td>45.2 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>9.09</td>
<td>8.62</td>
<td>8.17</td>
<td>7.75</td>
<td>7.35</td>
<td>6.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0</td>
<td>8.92</td>
<td>8.46</td>
<td>8.02</td>
<td>7.61</td>
<td>7.21</td>
<td>6.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.0</td>
<td>8.74</td>
<td>8.30</td>
<td>7.87</td>
<td>7.47</td>
<td>7.09</td>
<td>6.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.0</td>
<td>8.58</td>
<td>8.14</td>
<td>7.73</td>
<td>7.34</td>
<td>6.96</td>
<td>6.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.0</td>
<td>8.42</td>
<td>7.99</td>
<td>7.59</td>
<td>7.21</td>
<td>6.84</td>
<td>6.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>8.26</td>
<td>7.85</td>
<td>7.46</td>
<td>7.08</td>
<td>6.72</td>
<td>6.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.0</td>
<td>8.11</td>
<td>7.71</td>
<td>7.33</td>
<td>6.96</td>
<td>6.62</td>
<td>6.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td>7.97</td>
<td>7.58</td>
<td>7.20</td>
<td>6.85</td>
<td>6.51</td>
<td>6.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.0</td>
<td>7.83</td>
<td>7.44</td>
<td>7.08</td>
<td>6.73</td>
<td>6.40</td>
<td>6.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.0</td>
<td>7.69</td>
<td>7.32</td>
<td>6.96</td>
<td>6.62</td>
<td>6.30</td>
<td>5.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>7.56</td>
<td>7.19</td>
<td>6.85</td>
<td>6.51</td>
<td>6.20</td>
<td>5.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.0</td>
<td>7.43</td>
<td>7.07</td>
<td>6.73</td>
<td>6.41</td>
<td>6.10</td>
<td>5.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>7.31</td>
<td>6.96</td>
<td>6.62</td>
<td>6.31</td>
<td>6.01</td>
<td>5.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>7.18</td>
<td>6.84</td>
<td>6.52</td>
<td>6.21</td>
<td>5.91</td>
<td>5.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.0</td>
<td>7.07</td>
<td>6.73</td>
<td>6.42</td>
<td>6.11</td>
<td>5.82</td>
<td>5.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>6.95</td>
<td>6.62</td>
<td>6.31</td>
<td>6.02</td>
<td>5.73</td>
<td>5.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>6.84</td>
<td>3.52</td>
<td>6.22</td>
<td>5.93</td>
<td>5.65</td>
<td>5.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.0</td>
<td>6.73</td>
<td>6.42</td>
<td>6.12</td>
<td>5.84</td>
<td>5.56</td>
<td>5.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.0</td>
<td>6.62</td>
<td>6.32</td>
<td>6.03</td>
<td>5.75</td>
<td>5.48</td>
<td>5.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.0</td>
<td>6.52</td>
<td>6.22</td>
<td>5.98</td>
<td>5.66</td>
<td>5.40</td>
<td>5.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>6.41</td>
<td>6.12</td>
<td>5.84</td>
<td>5.58</td>
<td>5.32</td>
<td>5.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.0</td>
<td>6.31</td>
<td>6.03</td>
<td>5.75</td>
<td>5.49</td>
<td>5.24</td>
<td>5.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.0</td>
<td>6.21</td>
<td>5.93</td>
<td>5.67</td>
<td>5.41</td>
<td>5.17</td>
<td>4.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.0</td>
<td>6.12</td>
<td>5.84</td>
<td>5.58</td>
<td>5.33</td>
<td>5.09</td>
<td>4.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.0</td>
<td>6.02</td>
<td>5.75</td>
<td>5.50</td>
<td>5.25</td>
<td>5.02</td>
<td>4.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.0</td>
<td>5.93</td>
<td>5.67</td>
<td>5.41</td>
<td>5.17</td>
<td>4.94</td>
<td>4.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Esta Tabla es únicamente de Información. **NO** se necesita cuando se calibra el Modelo 55 de acuerdo con las instrucciones indicadas en el capítulo titulado *Calibración.*
APÉNDICE B - CARTA DE CONVERSIÓN

<table>
<thead>
<tr>
<th>Para Convertir de</th>
<th>A</th>
<th>Ecuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pies</td>
<td>Metros</td>
<td>Multiplique por 0.3048</td>
</tr>
<tr>
<td>Metros</td>
<td>Pies</td>
<td>Multiplique por 3.2808399</td>
</tr>
<tr>
<td>Grados Celsius</td>
<td>Grados Fahrenheit</td>
<td>($^\circ$C × 9/5) + 32</td>
</tr>
<tr>
<td>Grados Fahrenheit</td>
<td>Grados Celsius</td>
<td>($^\circ$F - 32) × 5/9</td>
</tr>
<tr>
<td>Miligramos por litro (mg/L)</td>
<td>Partes por millón (ppM)</td>
<td>Multiplique por 1</td>
</tr>
</tbody>
</table>